您现在的位置: 六六教师之家学习网高中学习高一学习高一数学学习高一数学:对数与对数运算测试题

高一数学:对数与对数运算测试题

六六教师之家 | 高一数学学习 | 人气:912

标签:高一数学学习大全,http://www.jiaoshi66.com 高一数学:对数与对数运算测试题,

  1.2-3=18化为对数式为()

  A.log182=-3B.log18(-3)=2

  C.log218=-3D.log2(-3)=18

  解析:选C.根据对数的定义可知选C.

  2.在b=log(a-2)(5-a)中,实数a的取值范围是()

  A.a>5或a<2B.2<a<3或3<a<5

  C.2<a<5D.3<a<4

  解析:选B.5-a>0a-2>0且a-2≠1,∴2<a<3或3<a<5.

  3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2,其中正确的是()

  A.①③B.②④

  C.①②D.③④

  解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.

  4.方程log3(2x-1)=1的解为x=________.

  解析:2x-1=3,∴x=2.

  答案:2

  1.logab=1成立的条件是()

  A.a=bB.a=b,且b>0

  C.a>0,且a≠1D.a>0,a=b≠1

  解析:选D.a>0且a≠1,b>0,a1=b.

  2.若loga7b=c,则a、b、c之间满足()

  A.b7=acB.b=a7c

  C.b=7acD.b=c7a

  解析:选B.loga7b=c?ac=7b,∴b=a7c.

  3.如果f(ex)=x,则f(e)=()

  A.1B.ee

  C.2eD.0

  解析:选A.令ex=t(t>0),则x=lnt,∴f(t)=lnt.

  ∴f(e)=lne=1.

  4.方程2log3x=14的解是()

  A.x=19B.x=x3

  C.x=3D.x=9

  解析:选A.2log3x=2-2,∴log3x=-2,∴x=3-2=19.

  5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为()

  A.9B.8

  C.7D.6

  解析:选A.∵log2(log3x)=0,∴log3x=1,∴x=3.

  同理y=4,z=2.∴x+y+z=9.

  6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且≠1),则logx(abc)=()

  A.47B.27

  C.72D.74

  解析:选D.x=a2=b=c4,所以(abc)4=x7,

  所以abc=x74.即logx(abc)=74.

  7.若a>0,a2=49,则log23a=________.

  解析:由a>0,a2=(23)2,可知a=23,

  ∴log23a=log2323=1.

  答案:1

  8.若lg(lnx)=0,则x=________.

  解析:lnx=1,x=e.

  答案:e

  9.方程9x-6?3x-7=0的解是________.

  解析:设3x=t(t>0),

  则原方程可化为t2-6t-7=0,

  解得t=7或t=-1(舍去),∴t=7,即3x=7.

  ∴x=log37.

  答案:x=log37

  10.将下列指数式与对数式互化:

  (1)log216=4;(2)log1327=-3;

  (3)log3x=6(x>0);(4)43=64;

  (5)3-2=19;(6)(14)-2=16.

  解:(1)24=16.(2)(13)-3=27.

  (3)(3)6=x.(4)log464=3.

  (5)log319=-2.(6)log1416=-2.

  11.计算:23+log23+35-log39.

  解:原式=23×2log23+353log39=23×3+359=24+27=51.

  12.已知logab=logba(a>0,且a≠1;b>0,且b≠1).

  求证:a=b或a=1b.

  证明:设logab=logba=k,

  则b=ak,a=bk,∴b=(bk)k=bk2.

  ∵b>0,且b≠1,∴k2=1,

  即k=±1.当k=-1时,a=1b;

  当k=1时,a=b.∴a=b或a=1b,命题得证.

(实习编辑:艾心)


收藏此页】【 】【打印】【回到顶部
 《高一数学:对数与对数运算测试题》相关文章
相关分类
高一数学学习推荐