说明:
1 函数的定义域通常由问题的实际背景确定,如果课前三个实例;
2 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;
3 函数的定义域、值域要写成集合或区间的形式.
巩固练习:课本P22第1题
2.判断两个函数是否为同一函数
课本P21例2
解:(略)
说明:
1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
巩固练习:
1 课本P22第2题
2 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?
(1)f ( x ) = (x -1) 0;g ( x ) = 1
(2)f ( x ) = x; g ( x ) =
(3)f ( x ) = x 2;f ( x ) = (x + 1) 2
(4)f ( x ) = | x | ;g ( x ) =
(三)课堂练习
求下列函数的定义域
(1)
(2)
(3)
(4)
(5)
(6)
三、归纳小结,强化思想
从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
四、作业布置
课本P28 习题1.2(A组) 第1—7题 (B组)第1题
上一篇:数学教案-等差数列
tag: 高一数学教案,高一数学必修3教案,高一数学必修1教案,优秀教案 - 数学教案 - 高一数学教案