您现在的位置: 六六教师之家学习网学习方法网高中学习方法大全高三学习方法高三立体几何章末综合测试题

高三立体几何章末综合测试题

六六教师之家 | 高三学习方法 | 人气:762

标签:高三学习方法大全,http://www.jiaoshi66.com 高三立体几何章末综合测试题,

则∠ABO=θ ,由图得sin θ=AOAB=ACAB•AOAC=sin 30°•sin 60°=34.
【答案】 34
三、解答题(本大 题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(10分)如图所示,矩形ABCD中,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影E落在BC上.

(1)求证:平面ACD⊥平面ABC; 
(2)求三棱锥 A-BCD的体积.
 解析 (1)∵AE⊥平面BCD,∴AE⊥CD.
又BC⊥CD, 且AE∩BC=E,
∴CD⊥平面ABC.
又CD⊂平面ACD,
∴平面ACD⊥平面ABC.
(2)由(1)知,CD⊥平面ABC,
又AB⊂平面ABC,∴CD⊥AB.
又∵AB⊥AD,CD∩AD=D,
∴AB⊥平面ACD.
∴VA-BCD=VB-ACD=13•S△ACD•AB.
又∵在△ACD中,AC⊥CD,AD=BC=4,AB=CD=3,
∴AC=AD2-CD2=42-32=7.
∴VA-BCD=13×12×7×3×3=372.
18.(12分)如图,四边形ABCD为正方形,四边形BDEF为矩形,AB=2BF,DE⊥平面ABCD,G为EF的中点.
(1)求证:CF∥平面ADE;
(2)求证:平面ABG⊥平面CDG;
(3)求二面角C-FG-B的余弦值.
 解析 (1)∵BF∥DE,BC∥AD,BF∩BC=B,DE∩AD=D,∴平面CBF∥平面ADE.
又CF⊂平面CBF,
∴CF∥平面ADE.
(2)如图,取AB的中点M,CD的中点N,连接GM、GN、MN、AC、BD,设AC、MN、BD交于O,连接GO.
∵四边形ABCD为正方形,四边形BDEF为矩形,
AB=2BF,DE⊥平面ABCD,G为EF的中点,
则GO⊥平面ABCD,GO=12MN,
∴GN⊥MG.
又GN⊥ DC,AB∥DC,
∴GN⊥AB.
又AB∩MG=M,
∴GN⊥平面GAB.
又GN⊂平面CDG,
∴平面ABG⊥平面CDG.
(3)由已知易得CG⊥FG,由(2)知GO⊥EF,
∴∠CGO为二面角C-FG-B的平面角,
∴cos ∠CGO=GOGC=33.
19.(12分)(2011•南昌二模)如图所示的多面体ABC-A1B1C1中,三角形ABC是边长为4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4.
(1)若O是AB的中点,求证:OC1⊥A1B1;
(2)求平面AB1C1与平面A1B1C1所成的角的余弦值.
 解析 (1)设线段A1B1的中点为E,连接OE,C1E.
由AA1⊥平面ABC得AA1⊥AB,
又BB1∥AA1且AA1=BB1,
所以AA1B1B是矩形.
又点O是线段AB的中点,
所以OE∥AA1,所以OE⊥A1B1.
由AA1⊥平面ABC得AA1⊥AC,A1A⊥BC.
又BB1∥AA1∥CC1,
所以BB1⊥BC,CC1⊥AC,CC1⊥BC,
且AC=BC=4,AA1=BB1=4,CC1=2,
所以A1C1=B1C1,所以C1E⊥A1B1.
又C1E∩OE=E,
所以A1B1⊥平面OC1E,
因为OC1⊂平面OC1E,所以OC1⊥A1B1.
(2)如图,以O为原点,OE→,OA→,OC→所在方向分别为x,y,z轴的正方向建立空间直角坐标系O-xyz,
则A(0,2,0),A1(4,2,0),B1(4,-2,0),C1(2,0,23),
设平面AB1C1的法向量为n1=(x1,y1,z1),则有
n1•AB1→=0,n1•AC1→=0⇒
x1,y1,z1•4,-4,0=0,x1,y1,z1•2,-2,23=0⇒x1=y1,z1=0,
令x1=1,则n1=(1,1,0).
设平面A1B1C1的法向量为n2=(x2,y2,z2),则有
n2•A1B1→=0,n2•A1C1→=0⇒x2,y2,z2•0,-4,0=0,x2,y2,z2•-2,-2,23=0
⇒y2=0,x2=3z2,令z2=1,则n2=(3,0,1).
所以cos〈n1,n2〉=n1•n2|n1|•|n2|=32×2=64,
所以平面AB1C1与平面A1B1C1所成的角的余弦值是64.
20.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.
(1)求证:B1D1∥平面A1BD;
(2)求证:MD⊥AC;
(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.
 解析 (1)由直四棱柱概念,得BB1綊DD1,
∴四边形BB1D1D是平行四边形,
∴B1D1∥BD.
而BD⊂平面A1BD,B1D1⊄平面A1BD,∴B1D1∥平面A1BD.
(2)∵BB1⊥平面ABCD,AC⊂平面ABCD,
∴BB1⊥AC.
又∵BD⊥AC,且BD∩BB1=B,
∴AC⊥平面BB1D1D.
而MD⊂平面BB1D1D,
∴MD⊥AC.
(3)当点M为棱BB1的中点时,取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM,如图所示.
∵N是DC的中点,BD=BC,∴BN⊥DC.
又∵DC是平面ABCD与平面DCC1D1的交线,
而平面ABCD⊥平面DCC1D1,
∴BN⊥平面DCC1D1.
又可证得,O是NN1的中点,∴BM綊ON,
即四边形BMON是平行四边形,
∴BN∥OM,∴OM⊥平面CC1D1D,
∵OM⊂平面DMC1,∴平面DMC1⊥平面CC1D1D.
21.(12分)如图所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.E,F,G分别为线段PC,PD,BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD.
(1)求证:PA∥平面EFG;
(2)求二面角G-EF-D的大小.

解析 (1)∵PE=EC,PF=FD,∴EF∥CD.
又CD∥AB,∴EF∥AB,∴EF∥平面PAB.
同理,EG∥平面PAB.
又∵EF∩EG=E,∴平面PAB∥平面EFG,
而PA在平面PAB内,∴PA∥平面EFG.
(2)如图,以D为坐标原点,DA,DC,DF所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,则A(2,0,0),P(0,0,2),E(0,1,1),F(0,0,1),G(1,2,0),
易知DA→=(2 ,0,0)为平面EFD的一个法向量.
设平面EFG的一个法向量为n=(x,y,z),
又EF→=(0,-1,0),EG→=(1,1,-1),
由n•EF→=0,n•EG→=0,得x,y,z•0,-1,0=0,x,y,z•1,1,-1=0,
即y=0,x+y-z=0,取x=1,得n=(1,0,1).
设所求二面角为θ,cos θ=n•DA→|n||DA→|=222=22,
∴θ=45°,即二面角G-EF-D的平面角的大小为45°.
2 2.(12分)在侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,A1A=AB,E为BB1延长线上的一点,D1E⊥面D1AC.
(1)求二面角E-AC-D1的大小;
(2)在D1E上是否存在一点P,使A1P∥平面EAC?若存在,求D1P∶PE的值;若不存在,说明理由.
 解析 设AC与BD交于O,建立如图所示的空间直角坐标系O-xyz,设AB=2,则A(3,0,0),B(0,1,0),C(-3,0,0),D(0,-1,0),D1(0,-1,2),A1(3,0,2).

(1)设E(0,1,2+h),则D1E→=(0,2,h),AC→=(-23,0,0),D1A→=(3,1,-2),
∵D1E⊥平面D1AC,
∴D1E⊥AC,D1E⊥D1A,
∴D1E→•AC→=0,D1E→•D1A→=0,
∴2-2h=0,∴h=1,即E(0,1,3),
∴D1E→=(0,2,1),AE→=(-3,1,3).
设平面EAC的法向量为m=(x,y,z),
则m⊥AC→,m⊥AE→,
∴x=0,-3x+y+3z=0,
令z=-1,得m=(0,3,-1),
∴cos〈m,D1E→〉=m•D1E→|m||D1E→|=22,
∴二面角E-AC-D1的大小为45°.
(2)设D1P→=λPE→=λ(D1E→-D1P→),
则D1P→=λ1+λD1E→=0,2λ1+λ,λ1+λ,
∴A1P→=A1D1→+D1P→
=(-3,-1,0)+0,2λ1+λ,λ1+λ
=-3,λ-11+λ,λ1+λ.
∵A1P∥平面EAC,
∴A1P→⊥m,
∴A1P→•m=0,
∴-3×0+3×λ-11+λ+(-1)×λ1+λ=0,
∴λ=32.
∴存在点P使A1P∥平面EAC,
此时D1P∶PE=3∶2.

上一页  [1] [2] 

收藏此页】【 】【打印】【回到顶部
 《高三立体几何章末综合测试题》相关文章

tag: 测试题 立体几何高三学习方法,高三学习方法大全,学习方法网 - 高中学习方法大全 - 高三学习方法

相关分类
高三学习方法推荐