您现在的位置: 六六教师之家学习网初中学习初一学习初一数学学习初一数学上册第四章教案:几何图形初步导学

初一数学上册第四章教案:几何图形初步导学

六六教师之家 | 初一数学学习 | 人气:762

标签:初一数学学习大全,http://www.jiaoshi66.com 初一数学上册第四章教案:几何图形初步导学,

  【学习目标】:1、在现实情景中,理解角的概念,掌握角的表示方法;

  2、认识角的度量单位:度、分、秒,学会进行简单的换算和角度的计算。

  【重点难点】:角的表示和角度的计算是重点;角的适当表示是难点。

  【导学指导】

  一、知识链接

  观察课本136页图4.3.1;思考问题:

  如图,时钟的时针与分针,棱锥相交的两条棱,直尺相交的两条边,给我们什么平面图形的形象?

  二、自主学习

  1.角的定义1: 有__________________的两条射线组成的图形叫做角。

  这个公共端点是角的________,这两条射线是角的__________。

  ∠AOB;

  ②用一个大写字母表示:∠O;

  ③用一个希腊字母表示:∠a;

  ④用一个阿拉伯数学表示:∠1。

  思考:用适当的方法表示下图中的每个角:

  演示:把一条射线由OA的位置绕点O旋转到OB的位置,如图(1)

  射线开始的位置OA与旋转后的位置OB组成了什么图形?

  角。

  3.角的定义2: 角也可以看作由一条射线绕着它的端点旋转面形成的图形。

  如图(2),当射线旋转到起始位置OA与终止位置OB在一条直线上时,形成_____角;

  如图(3),继续旋转,OB与OA重合时,又形成________角;

  思考:平角是一条直线吗?周角是一条射线吗?为什么?

  4、角的度量

  阅读课本137页;填空:

  1周角=_____0 , 1平角=_____0;

  10=____′, 1′=_____′′;

  如∠a的度数是48度56分37秒,记作∠a=48056′37′′。

  度、分、秒是常用的角的度量单位,以度、分、秒为单位的角的度量制,叫做角度制,

  注意:角的度、分、秒与时间的时、分、秒一样,都是60进制,

  计算时,借1当成60,满60进1。

  例 计算:(1)53028′+47035′; (2)17027′+3050′;(学生自己完成)

  【课堂练习】:

  课本138页1、2。

  【要点归纳】:

  1、什么是角、平角、周角?

  2、怎么表示角?

  3、角的度量单位是什么?它们是如何换算的?

  【拓展训练】:

  1、(37.145)0 = 度 分 秒;98030′18′′= 度。

  2、下午2时30分,钟表中时针与分针的夹角为〔 〕

  A、900 B、1050 C、1200 D、1350

  3、如图,A、B、C在一直线上,已知 1=53°, 2=37°;CD与CE垂直吗?

  【总结反思】:

  课题 4.3.2角的比较与运算

  【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系;

  2、理解角平分线的概念,会画角平分线。

  【重点难点】:角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。

  【导学指导】

  一、知识链接

  回顾线段大小的比较,,怎样比较图中线段AB、BC、CA的长短?

  (1) 度量法;(2)叠合法。

  AB

  那么怎样比较∠A、 ∠ B、 ∠ C的大小呢?

  二、自主学习

  1、比较角的大小

  (1)度量法:用量角器量出角的度数,然后比较它们的大小。

  (2)叠合法:把两个角叠合在一起比较大小。

  教师演示:

  (1)∠AOB<∠AOB′;(2)∠AOB=∠AOB′;(3)∠AOB>∠AOB′。

  2、认识角的和差

  思考:如图,图中共有几个角?它们之间有什么关系?

  图中共有3个角:∠AOB、∠AOC、∠BOC。它们的关系是:

  ∠AOC=∠AOB+∠BOC;

  ∠BOC=∠AOC-∠AOB;

  ∠AOB=∠AOC-∠BOC

www.jiaoshi66.comwww.jiaoshi66.com

  3、用三角板拼角

  探究:借助三角尺画出150,750的角。

  一副三角板的各个角分别是多少度?___________________________________

  学生尝试画角。

  你还能画出哪些角?有什么规律吗?

  还能画出___________________________________

  规律是:凡是 的倍数的角都能画出。

  4、角平分线

  在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?

  如图(1)

  角的平分线:从一个角的_____出发,把这个角分成_______的两个角的射线,叫做这个角的平分线。 类似地,还有角的三等分线等。如图(2)中的OB、OC。

  OB是∠AOC的一平分线,可以记作:

  ∠AOC=2∠AOB=2∠BOC或∠AOB=∠BOC= 。

  5、例题学习

  例1 如图,O是直线AB上一点,∠AOC=53017′,求∠ BOC的度数。

  例2 把一个周角7等分,每一份是多少度的角(精确到分)

  【课堂练习】:

  课本140-141页1、2、3。

  【要点归纳】:

  1、角的大小比较的方法和角的和差关系;

  2、用一副三角板画角;

  3、角的平分线及表示。

  【拓展训练】:

  1、如图,O为直线AB上一点,射线OD、OE分别平分∠AOC、∠BOC,求∠DOE的度数。

  【总结反思】:

  课题:余角和补角(1)

  【学习目标】在具体的现实情境中,认识一个角的余角和补角;

  【重点难点】正确求出一个角的余角和补角。

  【导学指导】

  一、知识链接

  思考:

  (1) 在一副三角板中同一块三角板的两个锐角和等于多少度?

  (2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。

  (3) 如 图 2,已知点A、O、B在一直线上 ,∠COD=90°,那么∠1+∠2= 。

  二、自主探究

  1.互为余角的定义:

  思考:

  (1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=

  (2) 如图4,A、O、B在同一直线上,∠1+∠2=

  2.互为补角的定义:

  问题1:以上定义中的“互为”是什么意思?

  问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗?

  3.新知应用:

  例1:若一个角的补角等于它的余角4倍,求这个角的度数。

  X k b 1 . c o m

  例2:如图,∠AOC=∠COB=90°,∠DOE=90°,A、O、B三点在一直线上

  (1)写出∠COE的余角,∠AOE的补角;

  (2)找出图中一对相等的角,并说明理由;

  【课堂练习】:

  课本141页练习1、2、3;

  【要点归纳】:

  【拓展训练】:

  1、一个角的余角比它的补角的 还少 ,求这个角的度数。

  2、若 和 互余,且 : =7:2,求 、 的度数。

  【总结反思】:

  课题:余角和补角(2)

  【学习目标】:1、掌握余角和补角的性质。

  2、了解方位角,能确定具体物体的方位。

  【重点难点】掌握余角和补角的性质;方位角的应用;

  【导学指导】

  一、知识链接

  1.70°的余角是  ,补角是    ;

  2.∠a(∠a <90°)的它的余角是 ,它的补角是 ;

  二、自主学习

  1.探究补角的性质:

  例3、如图, ∠1与∠2互补,∠3与∠4互补, ∠1= ∠3,那么∠2与∠4相等吗?为什么?

  分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800 - ,

  ∠3与∠4互补,∠4等于什么? ∠4=1800 - 。

  (2)当∠1= ∠3时,∠2与∠4有什么关系?为什么?

  ∠2=∠4(等量减等量,差相等)

  上面的结论,用文字怎么叙述?

  补角的性质:等角的 相等。

  2.探究余角的性质:

  如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?

  余角性质:等角的 相等

  3.方位角:

  (1)认识方位:

  正东、正南、正西、正北、东南、

上一页  [1] [2] [3] [4] [5]  下一页

收藏此页】【 】【打印】【回到顶部
 《初一数学上册第四章教案:几何图形初步导学》相关文章
相关分类
初一数学学习推荐