二倍角的正弦、余弦、正切(第一课时)
(一)教学具准备
投影仪或多媒体设备
(二)教学目标
1.掌握 、 、 公式的推导,明确 的取值范围.
2.运用二倍角公式求三角函数值.
(三)教学过程
1.设置情境
师:我们已经学习了两角和与差的正弦、余弦、正切公式,请大家回忆一下这组公式的来龙去脉,并请一个同学把这六个公式写在黑板上,
生:
师:很好,对于这些公式大家一方面要从公式的推导上去理解它,另一方面要从公式的结构特点上去记忆,还要注意公式的正用、逆用和变用.今天,我们继续学习二倍角的正弦、余弦和正切公式
2.探索研究
师:请大家想一想,在公式 、 、 中对 、 如何合理赋值,才能出现 、 、 的表达式,并请同学把对应的等式写在黑板上.
生:可在 、 、
【例2】不查表求值:
(1) ; (2) ;
(3) ; (4) .
解:(1)
(2)
(3)
(4)
说明:逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式原形以便合理运用公式.
【例3】 求证:
引导学生观察式子两边的结构,提出证题的方向.
生:左边都是单角的三角函数,右边是二倍角.又因左边比右边明显复杂得多,所以应由左边证向右边,注意把单角的三角函数变为二倍角.
师:(板书)
证明:左边
右边
所以原式成立
【例4】化简: .
师:这道题给我们的感觉是有些无从下手,很难看出有什么公式可以直接使用.两个角 与 似乎还有一线希望,但由于受函数名称限制难以发挥它的作用,大家都来想想看,有什么办法可以打破这一僵局(请同学们讨论)?
生:在同角三角函数的化简中,如果一个式子有弦、有切,我们可以把切化成弦.
师:好的,我们来尝试(板书)
解:
练习(投影)
(1)化简
(2)
(3)若 ,则
答案:(1) ;(2) ;(3)8
4.总结提炼
(1)在两角和的三角函数公式 、 、 中,当 时,就可以得到二倍角的三角函数公式 、 、
下学期 4.7 二倍角的正弦、余弦、正切1由www.jiaoshi66.com收集及整理,转载请说明出处www.jiaoshi66.com(四)板书设计
二倍角公式
应注意几个问题:
例1
例2
例3
例4
演练反馈
总结提炼
tag: 高一数学教案,高一数学必修3教案,高一数学必修1教案,优秀教案 - 数学教案 - 高一数学教案