教学内容:课本41-45页中例题和习题。
教学目的:使学生初步掌握圆锥体积的计算公式。
并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
教学难点:圆锥的体积应用
学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件
教学时间:一课时
教学过程:
一、复习
1、圆锥有什么特征?(课件出示)
使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
二、导人新课
我们已经学过圆柱体积的计算公式,那么圆锥的体积是不是和圆柱体积有关呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积
三、新课
1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
学生分组实验。
汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。
多指名说
接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3 × 圆柱体积
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?
引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积= 1/3 ×底面积×高
师:用字母应该怎样表示?
然后板书字母公式:V=1/3 SH
师:在这个公式里你觉得哪里最应该注意?
教学例1:(课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
1/3×19×12=76((立方厘米))
答:这个零件体积是76立方厘米。
做一做:课件出示,学生回答后,教师订正。
1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?
2、已知圆锥的底面半径r和高h,如何求体积V?
3、已知圆锥的底面直径d和高h,如何求体积V?
4、已知圆锥的底面周长C和高h,如何求体积V?
5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?
例2:(课件出示)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
判断:课件出示,学生回答后,教师订正。
1、圆柱体的体积一定比圆锥体的体积大( )
2、圆锥的体积等于和它等底等高的圆柱体积的 ( ) 。
3、正方体、长方体、圆锥体的体积都等于底面积×高。 ( )
4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米( )
四、教师小结。
这节课我们学习了哪些知识?你还有什么问题吗?
五、作业。课本练习九中7、8题。
上一篇:圆的认识教学设计
tag: 六年级数学教案,六年级数学上册教案,六年级数学教案下载,优秀教案 - 数学教案 - 六年级数学教案