标签:七年级下册数学教案,七年级上册数学教案,初中数学教案,http://www.jiaoshi66.com
人教新课标数学七年级《完全平方公式》教学设计之一,
完全平方公式(一)
一、教学目标
(一)知识目标
1.完全平方公式的推导及其应用.
2.完全平方公式的几何背景.
(二)能力目标
1.经历探索完全平方公式的过程,进一步发展符号感和推理能力.
2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.
(三)情感目标
1.了解数学的历史,激发学习数学兴趣.
2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.
二、教学重难点
(一)教学重难点
1.完全平方公式的推导过程、结构特点、语言表述、几何解释.
2.完全平方公式的应用.
(二)教学难点
1.完全平方公式的推导及其几何解释.
2.完全平方公式结构特点及其应用.
三、教具准备
投影片四张
第一张:试验田的改造,记作(§1.8.1 A)
第二张:想一想,记作(§1.8.1 B)
第三张:例题,记作(§1.8.1 C)
第四张:补充练习,记作(§1.8.1 D)
四、教学过程
Ⅰ.创设问题情景,引入新课
[师]去年,一位老农在一次“科技下乡”活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡”活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.
同学们,谁来帮老农实现这个愿望呢?
(同学们开始动手在练习本上画图,寻求解决的途径)
[生]我能帮这位爷爷.
[师]你能把你的结果展示给大家吗?
[生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.
图1-25
[师]你能用不同的方式表示试验田的面积吗?
[生]改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.
[生]也可以把试验田的总面积看成四部分的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.
[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?
[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2
[师]我们这节课就来研究上面这个公式——完全平方公式.
Ⅱ.讲授新课
1.推导完全平方公式
[师]我们通过对比试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料表明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度也能推导出这样的公式呢?
(出示投影片§1.8.1 A)
想一想:
(1)(a+b)2等于什么?你能用多项式乘法法则说明理由吗?
(2)(a-b)2等于什么?你是怎样想的.
(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)
[生]用多项式乘法法则可得
(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)
=a2+ab+ab+b2
=a2+2ab+b2
所以(a+b)2=a2+2ab+b2 (1)
[师]上面的几何解释和代数推导各有什么利弊?
[生]几何解释完全平方公式给我们以非常直观的认识,但几何解释(a+b)2=a2+2ab+b2,受到了条件限制:a>0且b>0;
代数推导完全平方公式虽然不直观,但在推导的过程中,a,b可以是正数,可以是负数,零,也可以是单项式,多项式.
[师]同学们分析得很有道理.接下来,我们来完成第(2)问.
[生]也可利用多项式乘法法则,则(a-b)2=(a-b)(a-b)=a2-ab-ba+b2=a2-2ab+b2.
[生]我是这样想的,因(a+b)2=a2+2ab+b2中的a、b可以是任意数或单项式、多项式.我们用“-b”代替公式中的“b”,利用上面的公式就可以得到(a-b)2=[a+(-b)]2.
[师]这位同学的想法很好.因为他很留心我们表述的每一句话的含义,你能继续沿着这个思路做下去吗?我们一块试一下.
[师生共析]
(a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2
↓ ↓ ↓ ↓ ↓ ↓
(a +b)2=a2+2·a ·b + b2
=a2-2ab+b2.
于是,我们得到又一个公式:
(a-b)2=a2-2ab+b2 (2)
[师]你能用语言描述上述公式(1)、(2)吗?
[生]公式(1)用语言描述为:两个数的和的平方等于这两个数的平方和与它们积的2倍的和;公式(2)用语言描述为:两个数的差的平方等于这两个数的平方和与它们积的2倍的差.这两个公式为完全平方公式.它们和平方差公式一样可以使整式的运算简便.
2.应用、升华
出示投影片(§1.8.1 B)
[例1]利用完全平方公式计算:
(1)(2x-3)2;(2)(4x+5y)2;
(3)(mn-a)2.
分析:利用完全平方公式计算,第一步先选择公式;第二步,准确代入公式;第三步化简.
解:(1)方法一:
[例2]利用完全平方公式计算
(1)(-x+2y)2;(2)(-x-y)2;
(3)(x+y-z)2;(4)(x+y)2-(x-y)2;
(5)(2x-3y)2(2x+3y)2.
分析:此题需灵活运用完全平方公式,(1)题可转化为(2y-x)2或(x-2y)2,再运用平方差公式;(2)题需转化为(x+y)2,利用和的完全平方公式;(3)题利用加法结合律变形为[(x+y)-z]2(或[x+(y-z)]2、[(x-z)+y]2),再用完全平方公式计算;(4)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.(5)题可先逆用幂的运算性质变形,再用平方差公式和完全平方公式.
解:(1)方法一:(-x+2y)2=(2y-x)2
=4y2-4xy+x2;
方法二:(-x+2y)2=[-(x-2y)]2=(x-2y)2=x2-4xy+4y2.
(2)(-x-y)2=[-(x+y)]2=(x+y)2=x2+2xy+y2.
(3)(x+y-z)2=[(x+y)-z]2=(x+y)2-2(x+y)·z+z2
=x2+y2+z2+2xy-2zx-2yz.
(4)方法一:(x+y)2-(x-y)2
=(x2+2xy+y2)-(x2-2xy+y2)
=4xy.
方法二:(x+y)2-(x-y)2
=[(x+y)+(x-y)][(x+y)-(x-y)]=4xy.
(5)(2x-3y)2(2x+3y)2
=[(2x-3y)(2x+3y)]2
=[4x2-9y2]2
=16x4-72x2y2+81y4.
Ⅲ.随堂练习
课本P34,1.计算:
人教新课标数学七年级《完全平方公式》教学设计之一由教案吧收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com
(1)(x-2y)2;(2)(2xy+x)2;
(3)(n+1)2-n2.
解:(1)(x-2y)2=(x)2-2·x·2y+(2y)2=x2-2xy+4y2
(2)(2xy+x)2=(2xy)2+2·2xy·x+(x)2=4x2y2+x2y+x2
(3)方法一:(n+1)2-n2=n2+2n+1-n2=2n+1.
方法二:(n+1)2-n2=[(n+1)+n][(n+1)-n]=2n+1.
Ⅳ.课后作业
1.课本P36.习题1.13的第1、2、3题.
2.阅读“读一读”,并回答文章中提出的问题.
Ⅴ.活动与探究
甲、乙两人合养了n头牛,而每头牛的卖价恰为n元.全部卖完后两人分钱方法如下:先由甲拿10元,再由乙拿10元,如此轮流,拿到最后剩下不足十元,轮到乙拿去,为了平均分配,甲应该补给乙多少元钱?
[过程]因牛n头,每头卖n元,故共卖得n2元.
令a表示n的十位以前的数字,b表示n的个位数字.即n=10a+b,于是n2=(10a+b)2=100a2+
20ab+b2=10×2a(5a+b)+b2.
因甲先取10元,而乙最后一次取钱时不足10元,所以n2中含有奇数个10元,以及最后剩下不足10元.
但10×2a(5a+b)中含有偶数个10元,因此b2中必含有奇数个10元,且b<10,所以b2只可能是1、4、9、16、25、36、49、64、81,而这九个数中,只有16和36含有奇数个10,因此b2只可能是16或36,但这两个数的个位数都是6,这就是说,乙最后所拿的是6元(即剩下不足10元).
[结果]甲比乙多拿了4元,为了平均分配甲必须补给乙2元.
五、板书设计
§1.8.1 完全平方公式(一)
一、几何背景
试验田的总面积有两种表示形式:
①a2+2ab+b2
②(a+b)2
对比得:(a+b)2=a2+2ab+b2
二、代数推导
(a+b)2=(a+b)(a+b)
=a2+2ab+b2
(a-b)2=[a+(-b)]2
=a2-2ab+b2
三、例题讲例
例1.利用完全平方公式计算:
(1)(2x-3)2
(2)(4x+5y)2
(3)(mn-a)2
四、随堂练习(略)
人教新课标数学七年级《完全平方公式》教学设计之一由教案吧收集及整理,转载请说明出处www.jiaoshi66.com