有更大挑战性的问题,激发学生学习探索的兴趣.
引入新知
1、在前面两节的学习中,我们知道,许多数的平方根和立方根都是无限不循环小数,它们不能化成分数.我们给无限不循环小数起个名,叫“无理数”.有理数和无理数统称为实数.
例1(1)你能尝试着找出三个无理数来吗?
(2)下列各数中,哪些是有理数?哪些是无理数?
解决问题后,可以再问同学:“用根号形式表示的数一定是无理数吗?”
2、实数的分类
(1)画一画
学生自己回忆并画出有理数的分类图.
(2)挑战自己
请学生尝试画出实数的分类图.
例2把下列各数填人相应的集合内:
整数集合{ … }
负分数集合{ …}
正数集合{ …}
负数集合{ …}
有理数集合{ …}
无理数集合{ …}
给出无理数定义后,请学生自己找找无理数,让学生在寻找的过程中,体会无理数的基本特征.
应该让学生自己小结得出结论:判断一个数是有理数还是
无理数,应该从它们的定义去辩别,而不能从形式上去分辩.
学生自己尝试画出实数的分类图,体会依据分类标准的不
同会有不同的分法.
探一探
我们知道,在有理数中只有符号不同的两个数叫做互为相反数,例如3和-3,
请学生回忆在有理数中绝对值的意义.例如,|-3|=3,|0|=0,|
试一试完成课本第176页思考题.
引导学生类比地归纳出下列结论:
数a的相反数是-a
一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
随着数从有理数扩充到实数,原来在有理数范围里讨论的相反数、绝对值等,自然地拓展到实数范围内。
练一练
例1 求下列各数的相反数和绝对值:
2.5,-
tag: 七年级数学教案,七年级下册数学教案,七年级上册数学教案,初中数学教案,优秀教案 - 数学教案 - 七年级数学教案