标签:小学五年级数学教案,五年级上册数学教案,http://www.jiaoshi66.com
北师大版数学五年级第十册教学设计,
(4)再观察。
①有两个约数的如:2、3、5、7、11、13、17、19等。这几个数的约数有什么特征?
讲:一个数,如果只有1和它本身两个约数,我们把这样的数叫做质数(或素数)。
②4、6、8、9、10、12、14、15……这些数的约数与上面的数的约数相比有什么不同?
讲:一个数,如果除了1和它本身两个约数外还有别的约数,我们把这样的数叫做合数。(板书“合数”)
请学号是合数的同学举手,点两名同学板演学号,大家检查。
③请学号既不是合数也不是质数的同学举手并报出学号,大家检查。
④学生看书第59页,读书上的小结语。
2、质数、合数的判断方法。
(1)根据什么判断一个数是质数还是合数?
(2)教学例2。
让学生独立写出后讲所写的数为什么是质数(或合数)。
四、课堂实践
1.做教材第60页的“做一做”。
2.做练习十三的第1题。
(1)按要求去做后看剩下的数都是什么数?
(2)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如第59页的100以内的质数表。(或者看6的倍数的左右)
3、做练习十三的2、4题。
五、课堂小结
学生小结今天学习的内容。
质数——只有两个约数。
自然数(按约数的个数分为) 合数——两个以上的约数
1——只有1个约数
六、课堂作业
1、做练习十三的第3题。
2、“你知道吗?”
课题二:分解质因数
教学要求 ①使学生理解质因数和分解质因数的概念。②初步学会分解质因数的方法。③培养学生分析和推理的能力。
教学重点 ①质因数和分解质因数的概念。②分解质因数的方法。
教学难点 分清因数和质因数,质因数和分解质因数的联系和区别。
教学用具 投影仪。
教学过程
一、创设情境
1.回答:什么叫做质数?什么叫做合数?
2.填空:1~12的质数有 ,合数有 。
3.观察:2、3、5、7、11……等质数,能写成比它本身小的两个数相乘的形式吗?为什么?4、6、8、9、10、12……合数,能写成比它本身小的两个数相乘的形式吗?为什么?
二、揭示课题
下面我们学习每个合数能否用几个质数相乘的形式表示出来。(板书课题)
三、探索研究
1.小组合作学习
(1)把6、28、60写成比它本身小的两个数相乘的形式。
6=2×3 28=4×7 60=6×10 60=2×30 60=4×15 …
(2)写出的两个数中如果还是合数的,再用上面的方法继续写下去。
6=2×3
28=2×2×7
60=2×2×3×5
(3)从上面的例子可以看出什么来?
师生归纳:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
做练习十三的第7题,学生口答。
⊙把一个合数用质因数相乘的形式表示出来,叫做分解质因数。(板书课题:分解质因数)
如把6、28、60分解质因数右以写成:
6=2×3
28=2×2×7
60=2×2×3×5
书写格式说明:要分解的合数写在等号左边,把它的质因数相乘的形式写在等号的右边。质因数按从小往大的顺序排列。
2.学习用短除法分解质因数。
(1)介绍短除法。
它是笔算除法的简化“ ”叫做短除号。
除数…2 6 …被除数
3 …商
(2)用短除法分解质因数。
2 28 2 60
2 14 2 30
7 3 15
5
28=2×2×7 60=2×2×3×5
(3)学生小结用短除法分解质因数的方法后看教材第62页的结语。
(4)再让学生讨论一下:分解质因数应注意什么?
四、课堂实践
做练习十三的第8题,让学生说后集体订正。
五、课堂小结
学生小结今天学习的内容。
六、课堂作业
1、做练习十三的第8题。
2、学有余力的同学做练习十三的第17*题。
4.最大公约数
课题一:求两个数的最大公约数
教学要求 ①使学生理解公约数、最大公约数、互质数的概念。②使学生初步掌握求两个数最大公约数的一般方法。③培养学生抽象、概括的能力和动手实际操作的能力。
教学重点 理解公约数、最大公约数、互质数的概念。
北师大版数学五年级第十册教学设计由教案吧收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com
教学难点 理解并掌握求两个数的最大公约数的一般方法。
教学用具 投影仪等。
教学过程
一、创设情境
填空:①12÷3=4,所以12能被4( )。4能( )12,12是3的( ),3是12的( )。②把18和30分解质因数是,它们公有的质因数是( )。③10的约数有( )。
二、揭示课题
我们已经学会求一个数的约数,现在来看两个数的约数。
三、探索研究
1.小组合作学习
(1)找出8、12的约数来。
(2)观察并回答。
①有无相同的约数?各是几?
②1、2、4是8和12的什么?
③其中最大的一个是几?知道叫什么吗?
(3)归纳并板书
①8和12公有的约数是:1、2、4,其中最大的一个是4。
②还可以用下图来表示。
8 1 3
2 4 6 12
8 和12 的公约数
(4)抽象、概括。
①你能说说什么是公约数、最大公约数吗?
②指导学生看教材第66页里有关公约数、最大公约数的概念。
(5)尝试练习。
做教材第67页上面的“做一做”的第1题。
2.学习互质数的概念
(1)找出下列各组数的公约数来:5和7 8和9 12和25 1和9
(2)这几组数的公约数有什么特点?
(3)这几组数中的两个数叫做什么?(看书67页)
(4)质数和互质数有什么不同?(使学生明确:质数是一个数,而互质数是两个数的关系)
3.学习例2
(1)出示例2并说明:我们通常用分解质因数的方法来求两个数的最大公约数。
(2)复习的第2题,我们已将18和30分解质因数(如后) 18=2×3×3 30=2×3×5
(3)观察、分析。
①从18和30分解质因数的式子中,你能看出18和30各有哪些约数吗?
②18和30的公约数就必须包含18和30公有的什么?
③18和30公有的质因数有哪些?
④18和30的公约数和最大公约数是哪些?(1、2、3、6(2×3))
⑤最大公约数6是怎样得出来的?
(4)归纳板书。
18和30的最大公约数6是这两个数全部公有质因数的乘积。
(5)求最大公约数的一般书写格式。
为了简便,我们把两个短除式合并成一个如: 18 30
让学生分组讨论合并后该怎样做?
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出最大公约数?
④为什么不把商也连乘进去?
(6)尝试练习。
做教材第68页的“做一做”,学生独立解答后点几名学生讲每步是怎样做的,最后集体订正。
(7)抽象概括求最大公约数的方法。
①谁能说说求最大公约数的方法。
②引导学生看教材第68页求两个数的最大公约数的方法。
四、课堂实践
做练习十四的1、2、3题。
五、课堂小结
学生总结今天学习的内容。
六、课堂作业
1.做练习十四的第4题。
2.做练习十四的12*题。
课题二:两种特殊情况的最大公约数
教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最大公约数,培养学生的观察能力。
教学重点 掌握求两个数的最大公约数的方法。
教学难点 正确、熟练地求出两种特殊情况的最大公约数。
教学过程
一、创设情境
1、思考并回答:①什么是公约数,什么是最大公约数?②什么是互质数?质数与互质数有什么区别?(回答后做练习十四的第5题)
2、求30和70的最大公约数?
3、说说下面每组中的两个数有什么关系?
7和21 8和15
二、揭示课题
我们已经学会求两个数的最大公约数,这节课我们继续学习求这两种特殊情况的最大公约数(板书课题)
三、探索研究
1.教学例3
(1)求出下列几组数的最大公约数:7和21 8和15 42和14 17和19
(2)观察结果:通过求这几组数的最大公约数,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第69页的结论。
(4)尝试练习。
做教材第69页的“做一做”,学生独立做后由学生讲评,集体订正。
四、课堂实践
1.做练习十四的第7题,学生独立观察看哪几组数是第一种特殊情况,哪几组数是第二种特殊情况,再解答出来。
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] 下一页