您现在的位置: 六六教师之家教育文章优秀教案数学教案七年级数学教案北师大版数学七年级上册教案全集

北师大版数学七年级上册教案全集

六六教师之家 | 七年级数学教案 | 人气:534

标签:七年级下册数学教案,七年级上册数学教案,初中数学教案,http://www.jiaoshi66.com 北师大版数学七年级上册教案全集,


第三十六课时
一、课题 §2.11有理数的混合运算(2) 
二、教学目标
1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;
2.培养学生的运算能力及综合运用知识解决问题的能力.
三、教学重点和难点
重点:有理数的运算顺序和运算律的运用.
难点:灵活运用运算律及符号的确定.
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有认知结构提出问题
1.叙述有理数的运算顺序.
2.三分钟小测试
计算下列各题(只要求直接写出答案):
(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;
(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;
(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);
(二)、讲授新课
例1 当a=-3,b=-5,c=4时,求下列代数式的值:
(1)(a+b)2; (2)a2-b2+c2;
(3)(-a+b-c)2; (4) a2+2ab+b2.
解:(1) (a+b)2
=(-3-5)2 (省略加号,是代数和)
=(-8)2=64; (注意符号)
(2) a2-b2+c2
=(-3)2-(-5)2+42 (让学生读一读)
=9-25+16 (注意-(-5)2的符号)
=0;
(3) (-a+b-c)2
=[-(-3)+(-5)-4]2 (注意符号)
=(3-5-4)2=36;
(4)a2+2ab+b2
=(-3)2+2(-3)(-5)+(-5)2
=9+30+25=64.
分析:此题是有理数的混合运算,有小括号可以先做小括号内的,
=1.02+6.25-12=-4.73.
在有理数混合运算中,先算乘方,再算乘除.乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写
例4 已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值.
解:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.
所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995
=x2-x-1.
当x=2时,原式=x2-x-1=4-2-1=1;
当x=-2时,原式=x2-x-1=4-(-2)-1=5.
三、课堂练习
1.当a=-6,b=-4,c=10时,求下列代数式的值:
2.判断下列各式是否成立(其中a是有理数,a≠0):
(1)a2+1>0; (2)1-a2<0;
七、练习设计
1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:
2.当a=-5.4,b=6,c=48,d=-1.2时,求下列代数式的值:
3.计算:
4.按要求列出算式,并求出结果.
(2)-64的绝对值的相反数与-2的平方的差.
5*.如果|ab-2|+(b-1)2=0,试求
八、板书设计
         §2.11有理数的混合运算(2)
(一)知识回顾   (三)例题解析    (五)课堂小结
            例4、例5
(二)观察发现    (四)课堂练习    练习设计    
九、教学后记
1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练.
2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径.


第三十七课时
一、课题 §2.11有理数复习课 

北师大版数学七年级上册教案全集由www.jiaoshi66.com收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com 二、教学目标
1、复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识;
2、培养学生综合运用知识解决问题的能力;
3、渗透数形结合的思想
三、教学重点和难点
重点:有理数概念和有理数运算
难点:负数和有理数法则的理解
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、讲授新课
1、阅读教材中的“全章小结”,给关键性词语打上横线
2、利用数轴患讲有理数有关概念
本章从引入负数开始,与小学学习的数一起纳入有理数范畴,我们学习的数地范围在不断扩
大从数轴上看,小学学习的数都在原点右边(含原点),引入负数以后,数轴的左边就有了
实际意义,原点所表示的0也不再是最小的数了数轴上的点所表示的数从左向右越来越大
,A点所表示的数小于B点所表示的数,而D点所表示的数在四个数中最大
我们用两个大写字母表示这两点间的距离,则AO>BO>CO,这个距离就是我们说的绝对值
由AO>BO>CO可知,负数的绝对值越大其数值反而越小
由上图中还可以知道CO=DO,即C,D两点到原点距离相等,即C,D所表示的数的绝对值相等,又它们在原点两侧,那么这两数互为相反数从数轴上看,互为相反数就是在原点两侧且到原点等距的两点所表示的数
利用数轴,我们可以很方便地解决许多题目
例1 (1)求出大于-5而小于5的所有整数;
(2)求出适合3<<6的所有整数;
(3)试求方程=5, =5的解;
(4)试求<3的解
解:(1)大于-5而小于5的所有整数,在数轴上表示±5之间的整数点,如图,显然有±4,±3,±2,±1,0
(2)3<<6在数轴上表示到原点的距离大于3个单位而小于6个单位的整数点
在原点左侧,到原点距离大于3个单位而小于6个单位的整数点有-5,-4;在原点右侧距离原点大于3个单位而小于6个单位的整数点有4,5
所以 适合3<<6的整数有±4,±5
(3) =5表示到原点距离有5个单位的数,显然原点左、右侧各有一个,分别是-5和5
所以=5的解是x=5或x=-5
同样=5表示2x到原点的距离是5个单位,这样的点有两个,分别是5和-5.
所以2x=5或2x=-5,解这两个简易方程得x=或x=-
(4) <3在数轴上表示到原点距离小于3个单位的所有点的集合.
很显然-3与3之间的任何一点到原点距离都小于3个单位
所以 -3<x<3
例2 有理数a、b、c、d如图所示,试求
解:显然c、d为负数,a、b为正数,且
=-c, (复述相反数定义和表示)
=a-c,(判断a-c>0)
=-a-d,(判断a+d<0)
=b-c(判断b-c>0)
3、有理数运算
 (1)+17+20;  (2)-13+(-21);  (3)-15-19;  (4)-31-(-16);  (5)-11×12;
(6)(-27)(-13); (7)-64÷16;  (8)(-54)÷(-24); (9)(-)3; (10)-()2;
(11)-(-1)100; (12)-2×32; (13)-(2×3)2; (14)(-2)3+32
计算[4()2÷2(-)]÷[(-)2+(-)3+(-)+1]
4、课堂练习
(1)填空:
①两个互为相反数的数的和是_____;
②两个互为相反数的数的商是_____;(0除外)
③____的绝对值与它本身互为相反数;
④____的平方与它的立方互为相反数;
⑤____与它绝对值的差为0;
⑥____的倒数与它的平方相等;
⑦____的倒数等于它本身;
⑧____的平方是4,_____的绝对值是4;
⑨如果-a>a,则a是_____;如果=-a3,则a是______;如果,那么a是_____;如果=-a,那么a是_____;
10 如果x3=1476,(-2453)3=-14760,那么x=____
(2)用“>”、“<”或“=”填空:
当a<0,b<0,c<0,d<0时:
①____0; ②____0; ③_____0;④____0;⑤____0;
⑥____0; ⑦____0; ⑧____0;
a>b时,⑨a>0,b>0,则;
10a<0,b<0,则.
七、练习设计
1、写出下列各数的相反数和倒数
  原 数   5   -6    1  05  -1
  相反数
  倒 数
2、计算:
(1)5÷0.1; (2)5÷0.001; (3)5÷(-0.01);(4)0.2÷0.1;(5)0.002÷0.001;
(6)(-0.03)÷0.01
3计算:
(1);        (2)(-81)÷÷(-16);
(3)     (4)3(-2.5)(-4)+5(-6)(-3)2;
(5){0.85-[12+4×(3-10)]}÷5;    (6)22+(-2)3×5-(-0.28)÷(-2)2
(7)[(-3)3-(-5)3]÷[(-3)-(-5)]
4分别根据下列条件求代数式的值:
(1)x=-1.3,y=2.4; (2)x=,y=-
八、板书设计
         §2.12有理数复习
(一)知识回顾   (三)例题解析    (五)课堂小结
            例1、例2
(二)观察发现    (四)课堂练习    练习设计    
九、教学后记
全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点
本节课是有理数全章的复习课,所以教学中抓住了有理数的概念和 理数的运算这两个主要内容,这是有理数的基础知识,也是复习的重点此外,还通过典型例题的分析,让学生熟练地利用数轴来解题,以提高他们对数形结合思想的认识,以及分析问题、解决问题的能力

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]  下一页

收藏此页】【 】【打印】【回到顶部
 《北师大版数学七年级上册教案全集》相关文章
相关分类
七年级数学教案推荐