您现在的位置: 六六教师之家教育文章优秀教案数学教案七年级数学教案北师大版数学七年级上册教案全集

北师大版数学七年级上册教案全集

六六教师之家 | 七年级数学教案 | 人气:534

标签:七年级下册数学教案,七年级上册数学教案,初中数学教案,http://www.jiaoshi66.com 北师大版数学七年级上册教案全集,
根据题意,得
100(x+4)+10(x+2)+x
=2[100x+10(x+2)+x+4]+150.
解方程
100x+400+10x+20+x
=200x+20x+40+2x+8+150,
111x-222x=198-420,
-111x=-222
x=2.
所以 100x+10(x+2)+x+4
=100×2+10(2+2)+2+4
=246.
答:原数为246.
(三)、课堂练习
1.填空:(投影)
(1)一个两位数,个位上的数是5,十位上的数是x,那么这个两位数可以表示为 ______ ;如果把个位与十位上的数位置对调,所得的两位数将是 ______ ;
(2)一个两位数,个位与十位上的数的差是5,如果个位上的数是a,则这个两位数可以表示成 ______ ;又,如果十位数上的数是b,那么这个两位数又可表示成 ______ .
2.一个两位数,个位和十位上的数字之和是14,如果把个位上的数和十位上的数的位置对调,则所得两位数比原来的两位数小18,求原来的两位数.
3.一个两位数,十位上的数与个位上的数的和是13,如果原来的数加上27等于十位上的数字与个位上的数字对调后的两位数,求原来的两位数.
(四)、师生共同小结
在师生共同回顾本节课所学内容的基础上,教师指出,求整数的数字问题,关键是能正确地用代数式表示整数.
七、练习设计
1.一个两位数,十位上的数是个位上的数的2倍,如果把个位和十位上的数的位置互换,得到的新数比原数小27,求原数.

北师大版数学七年级上册教案全集由www.jiaoshi66.com收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com 2.一个两位数,十位上的数与个位上的数之和是11,如果把十位上的数与个位数对调,那么得到的数就比原来的数大63,求原来的两位数.
3.一个两位数,十位上的数与个位上的数的和是13,如果原来的数加上27等于十位上的数字与个位上的数字对调后的两位数,求原来的两位数.
4.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍少1;若把这个三位数的百位上的数和个位上的数对调一下,所得的三位数比原来大99,求原三位数.
八、板书设计
         §5.2一元一次方程的应用(8)
(一)知识回顾   (三)例题解析    (五)课堂小结
            例1、例2
(二)观察发现    (四)课堂练习    练习设计    
九、教学后记
求解有关浓度配比问题的应用题,关键是明确溶液“稀释”或“加浓”前后,哪些量不变,哪些量改变,从而建立等量关系.
由实际问题引入的目的在于使学生从直观上理解溶液在“稀释”或“加浓”前后有关量的变与不变.从而为最终使有关浓度配比问题的应用题顺利求解铺平道路.


第七十七课时
第七十八课时
一、课题 §复习(1)
二、教学目标
1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;
2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;
3.掌握本章的全部定理和公理;
4.理解本章的数学思想方法;
5.了解本章的题目类型.
三、教学重点和难点
重点是理解本章的知识结构,掌握本章的全部定理和公理;
难点是理解本章的数学思想方法.
四、教学手段
引导——活动——讨论
五、教学方法
启发式教学
六、教学过程
(一)、本章的知识结构
(二)、本章中的概念
1.直线、射线、线段的概念.
2.线段的中点定义.
3.角的两个定义.
4.直角、平角、周角、锐角、钝角的概念
5.互余与互补的角.
(三)、本章中的公理和定理
1.直线的公理;线段的公理.
2.补角和余角的性质定理.
(四)、本章中的主要习题类型
1.对直线、射线、线段的概念的理解.
例1 下列说法中正确的是                             [  ]
A.延长射线OP              B.延长直线CD
C.延长线段CD              D.反向延长直线CD
解:C.因为射线和直线是可以向一方或两方无限延伸的,所以任何延长射线或直线的说法都是错误的.而线段有两个端点,可以向两方延长.
例2 如图1-57中的线段共有多少条?
解:15条,它们是:线段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,FG.
2.线段的和、差、倍、分.
例3 已知线段AB,延长AB到C,使AC=2BC,反向延长AB
解:B.如图1-58,因为AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一.
例4 如图1-59,B为线段AC上的一点,AB=4cm,BC=3cm,M,N分别为AB,BC的中点,求MN的长.
解:因为AB=4,M是AB的中点,所以MB=2,又因为N是BC的中点,所以BN=1.5.
则MN=2+1.5=3.5
3.角的概念性质及角平分线.
例5 如图1-60,已知AOC是一条直线,OD是∠AOB的平分线,OE是∠BOC的平分线,求∠EOD的度数.
所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°.
则∠EOD=90°.
例6 如图1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC与∠COB的度数的比是多少?
解:因为∠AOB=90°,又∠AOD=150°,所以∠BOD=60°.
又 ∠COD=90°,所以∠COB=30°.
则 ∠AOC=60°,(同角的余角相等)
∠AOC与∠COB的度数的比是2∶1.
4.互余与互补角的性质.
例7 如图1-62,直线AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度数.
解:因为COD为直线,∠BOE=90°,∠BOD=45°,
所以∠COE=180°-90°-45°=45°
又AOB为直线,∠BOE=90°,∠COE=45°
故∠COA=180°-90°-45°=45°,
而AOB为直线,∠BOD=45°,
因此∠AOD=180°-45°=135°.
例8 一个角是另一个角的3倍,且小角的余角与大角的余角之差为20°,求这两个角的度数.
解:设第一个角为x°,则另一个角为3x°,
依题义列方程得:(90-x)-(90-3x)=20,
解得:x=10,3x=30.
答:一个角为10°,另一个角为30°.
5.度分秒的换算及和、差、倍、分的计算.
例9 (1)将45.89°化成度、分、秒的形式.
(2)将80°34′45″化成度.
解:(1)45°53′24″.
(2)约为80.58°.
(3)约为9°44′11″(第一步,做减法后得12°58′55″;再做乘法后得36°174′165″,可以先不进位,做除法后得9°44′11″)
(五)、本章中所学到的数学思想
1.运动变化的观点:几何图形不是孤立和静止的,也应看作不断发展和变化的,如线段向一个方向延长,就发展成为射线;射线向另一方向延长就发展成直线.又如射线饶它的端点旋转就形成角;角的终边不断旋转就变化成直角、平角和周角.从图形的运动中可以看到变化,从变化中看到联系和区别及特性.
2.数形结合的思想:在几何的知识中经常遇到计算问题,对形的研究离不开数.正如数学家华罗庚所说:“数缺形时少直观,形缺数时难如微”.本章的知识中,将线段的长度用数量表示,利用方程的方法解决余角与补角的问题.因此我们对几何的学习不能与代数的学习截然分开,在形的问题难以解决时,发挥数的功能,在数的问题遇到困难时,画出与它相关的图形,都会给问题的解决带来新的思路.从几何的起始课,就注意数形结合,就会养成良好的思维习惯.
3.联系实际,从实际事物中抽象出数学模型.数学的产生来源于生产和生活实践,因此学习数学不能脱离实际生活,尤其是几何的学习更离不开实际生活.一方面要让学生知道本章的主要内容是线和角,都在生活中有大量的原型存在,另一方面又要引导学生将所学的知识去解决某些简单的实际问题,这才是理论联系实际的观点.
(六)、本章的疑点和误点分析
概念在应用中的混淆.
例10 判断正误:
(1)在∠AOB的边OA的延长线上取一点D.
(2)大于90°的角是钝角.

北师大版数学七年级上册教案全集由www.jiaoshi66.com收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com (3)任何一个角都可以有余角.
(4)∠A是锐角,则∠A的所有余角都相等.
(5)两个锐角的和一定小于平角.
(6)直线MN是平角.
(7)互补的两个角的和一定等于平角.
(8)如果一个角的补角是锐角,那么这个角就没有余角,
(9)钝角一定大于它的补角.
(10)经过三点一定可以画一条直线.
解:(1)错.因为角的两边是射线,而射线是可以向一方无限延伸的,所以就不能再说射线的延长线了.
(2)错.钝角的定义是:大于直角且小于平角的角,叫做钝角.
(3)错.余角的定义是:如果两个角的和是一个直角,这两个角互为余角.因此大于直角的角没有余角.
(4)对.∠A的所有余角都是90°-∠A.
(5)对.若∠A<90°,∠B<90°则∠A+∠B<90°+90°=180°.

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]  下一页

收藏此页】【 】【打印】【回到顶部
 《北师大版数学七年级上册教案全集》相关文章
相关分类
七年级数学教案推荐