您现在的位置: 六六教师之家教育文章优秀教案数学教案七年级数学教案北师大版数学七年级上册教案全集

北师大版数学七年级上册教案全集

六六教师之家 | 七年级数学教案 | 人气:534

标签:七年级下册数学教案,七年级上册数学教案,初中数学教案,http://www.jiaoshi66.com 北师大版数学七年级上册教案全集,
二、教学目标
1.使学生掌握解调配问题的方法;
2.通过对本类型题的学习和分析,进一步提高学生分析问题和解决问题的能力;
3.培养学生养成正确思考、善于思考的良好习惯.
三、教学重点和难点
重点:列方程解调配问题.
难点:搞清调动后的变化情况.
四、教学手段
引导——活动——讨论
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有的认知结构提出问题
(投影)有两个生产队收获粮食.第一生产队共有a人,第二生产队共有b人,为了赶在雨季来临之前,把粮食收获完,上级调拨10人去支援他们收获.现已知调往第一生产队有m人,用代数式表示:①调往第二生产队有多少人?②此时,第一、第二生产队各有多少人?
在学生对上述问题回答的基础上,教师指出,本节课我们来学习列方程解有关调配问题,解此类问题要特别注意的是按着怎样的要求调动的.
(二)、师生共同分析调配问题
例 在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?
首先,针对本题在分析时可提出如下问题:
从外处共调20人去支援.若设调往甲处的是x人,则调往乙处的是多少人?
其次,针对学生的回答,师生一起讨论列出下列表格
注意 x是调往甲处的人数.
最后,让学生依据上述表格,找出本题中的相等关系.
(调人后甲处人数=调人后乙处人数的2倍)
解:(一名学生口述,教师板演)
设应该调往甲处x人,则调往乙处的人数是(20-x)人.依据题意,得
27+x=2[19+(20-x)].
解方程
27+x=78-2x,
3x=51,
所以                    x=17.
20-x=20-17=3.
答:应调往甲处17人,调往乙处3人.
(三)、课堂练习(只列方程).
(投影)甲、乙两仓库分别存原料145吨和95吨.
1.甲库调走多少吨,两库库存相等?
2.甲库调给乙库多少吨,两库库存相等?
3.甲库调出多少吨,乙库比甲库多10吨?
4.甲库调给乙库多少吨,甲库比乙库还多10吨?
5.乙库调给甲库多少吨,甲库是乙库的2倍?
6.甲库每天调入5吨,乙库每天调入10吨,多少天后两库的库存相等?
7.甲库每天调出10吨,乙库每天调出5吨,几天后两库库存相等?
8.甲库每天调出5吨,乙库每天调出10吨,几天后甲库是乙库的2倍?
(145-x=95;145-x=95+x;145-x=90-10;145-x=95+x+10;145+x=2(95-x);145+5x=95+10x;145-10x=95-5x;145-5x=2(95-10x))
(本练习的目的在于使学生注意到调配问题的各种不同情况,进一步明确列方程时要根据调配的情况而定,故一定要注意调配的情况)
(四)、师生共同小结
在师生共同回顾了本节课所讲的内容的基础上,教师指出:调配问题,是根据调配后的关系列方程的,所以要注意怎样调配的,特别要注意一次调走了,还是调到相关的地方去了.
七、练习设计
1.甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需从乙队抽调多少人到甲队?
2.甲、乙两个水池共存水40吨,甲池注进水4吨,乙池放出水8吨后,两池的水正好相等.两池原来各有水多少吨?
3.甲槽有水34升,乙槽有水18升.现在两槽同时排水,都是平均每分排出2升.多少分钟后,甲槽的水是乙槽的水的3倍?
4.某队有林场108公顷,牧场54公顷.现在要栽培一种新的果树,把一部分牧场改为林场,使牧场面积只占林场面积的20%.改为林场的牧场面积是多少公顷?
5.某渔场的甲仓库存鱼30吨,乙仓库存鱼40吨.要再往这两个仓库运送80吨鱼,使甲仓库的存鱼量为乙仓库的存鱼量的1.5倍.应往甲仓库和乙仓库分别运送多少吨鱼?
(思考题)
三年前父亲的年龄是儿子年龄的4倍,三年后父亲年龄是儿子年龄的3倍,求父子现年各多少岁?
八、板书设计
         §5.2一元一次方程的应用(5)
(一)知识回顾   (三)例题解析    (五)课堂小结
            例1、例2
(二)观察发现    (四)课堂练习    练习设计    
九、教学后记
调配问题中既有劳力调配问题,又有事物调配的问题,且这类问题的应用较广泛.由于这类问题都可用二元一次方程组来求解,因此较复杂的应用题应放到二元一次方程组的章节中去处理.基于上述原因,本教学过程设计时所安排的例题、练习题、及作业题均以用一元一次方程解决较简单为标准.



第七十四课时
一、课题 §5.2一元一次方程的应用(6)
二、教学目标
1.使学生理解用一元一次方程解工程问题的规律;
2.通过对“工程问题”的分析,进一步培养学生用代数方法解应用题的能力;
3.通过本节课的教学,使学生养成正确思考、善于思考的良好习惯.
三、教学重点和难点
重点:列方程解工程问题.
难点:把全部工作量看作1.
四、教学手段
引导——活动——讨论
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有的认知结构提出问题
1.小学时学习过工程问题,在工程问题中涉及三个量:工作量、工作效率与工作时间.它们之间存在怎样的关系?
(工作量=工作效率×工作时间,
2.一件工作,若甲单独做2小时完成,那么甲单独做1小时完成全部工作量的多少?
3.一件工作,若甲单独做a小时完成,则甲单独做1小时,完成全部工作量的多少?m小时完成全部工作量的多少?a小时完成全部工作量的多少?
4.一件工作,若甲单独做7天完成,乙单独做5天完成,甲、乙合做一天完成全部工作量的多少?甲、乙合作2天完成全部工作量的多少?甲、乙合作x天完成全部工作量的多少?
(上述问题均用投影给出,请学生回答,教师补充)
今天学习列方程解工程问题.
(二)、讲授新课
例1 件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做,需要几小时完成?
师生共同分析,先画示意图(剩下部分需x小时完成),后找出题中相等关系.
相等关系:
甲完成工作量+乙完成工作量=全部工作量.
解:(由学生完成)

北师大版数学七年级上册教案全集由www.jiaoshi66.com收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com 设剩下的部分需要x小时完成,依题意,得
解这个方程,得 x=6
答:剩下的部分需要6小时完成.
此时,教师应指出:工程问题除用直线型示意图外,还常用圆形示意图进行分析,整个圆面积表示全部工作1.如右图.
例2 一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时后,剩下部分由甲、乙合作,问还需几小时完成?
师生共同分析:画示意图,寻找一个相等关系.
相等相等:
全部工作量=甲独做工作量+甲、乙合做工作量.
解:(让一名学生板演完成)
设甲、乙合作完成剩下部分工作量需x小时,依题意,得
解这个方程,得 x=16.
答:甲、乙合作完成剩下部分的工作量还需16小时.
(三)、巩固与引申
问还需几小时才能完成全部工作?
分析本题时可提出如下问题:
1.甲、乙、丙的工作效率分别是多少?
结合学生的回答,让学生画出示意图,并列出方程.
(四)、课堂练习
1.某地下管道由甲工程队单独铺设需要12天,由乙工程队单独铺设需18天.如果由这两个工程队从两端同时相向施工,要多少天可以铺好?
2.某工作甲单独做3小时完成,乙单独做5小时完成.现在要求两
(五)、师生共同小结
在师生共同回顾本节课所学内容的基础上,教师指出:工程问题的解题步骤为①全面审题后,画出直线型示意图或圆型示意图;②寻找全部工作量、单独完成工作量及合作完成工作量的一个相等关系式;③布列方程、解方程并经检验后书写答案.
七、练习设计
1.一个蓄水池装有甲、乙、丙三个进水管.单独开放甲管,45分可注满全池;单独开放乙管,60分可注满全池;单独开放丙管,90分可注满全池.现将三管一齐开放,多少分可注满全池?
2.某中学开展校外植树活动,让初一学生单独种植,需要7.5小时完成;让初二学生单独种植,需要5小时完成.现让初一、初二学生先一起种植1小时,再由初二学生单独完成剩余部分,共需多少小时完成?
3.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工4小时,完成了任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.
(思考题)
一个水池设有注水管和排水管.单独开注水管2小时可注满水池,单独开排水管3小时可将一池水排完.现将注水管与排水管同时开放若干小时后,关上注水管,排水管排掉水池之水所用时间比两管同时开放的时间少10分钟.问两管同时开了多少时间?

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]  下一页

收藏此页】【 】【打印】【回到顶部
 《北师大版数学七年级上册教案全集》相关文章
相关分类
七年级数学教案推荐