您现在的位置: 六六教师之家教育文章优秀教案数学教案七年级数学教案北师大版数学七年级上册教案全集

北师大版数学七年级上册教案全集

六六教师之家 | 七年级数学教案 | 人气:534

标签:七年级下册数学教案,七年级上册数学教案,初中数学教案,http://www.jiaoshi66.com 北师大版数学七年级上册教案全集,
(1)ax=bx; (2)(a2+1)x=(a2-1)x.
八、板书设计
         §5.1一元一次方程(4)
(一)知识回顾   (三)例题解析    (五)课堂小结
            例1、例2
(二)观察发现    (四)课堂练习    练习设计    
九、教学后记
关于一元一次方程解法的授课内容,本教学过程设计在内容编排上与人教版教材在编排上稍有不同,主要是基于以下两点原因:
1.先指出解最简的一元一次方程,在此基础上再逐步提出解较复杂的一元一次方程,把解较复杂的一元一次方程的过程化归成解最简单的一元一次方程的过程,这样提出问题和寻求解题方法比较自然;
2.学生在解一元一次方程时的很多错误,追其根源都是方程ax=b程的求根公式.所以,应先集中讲解一下如何准确、快速的解最简单的一元一次方程.显然它对学生来说并不困难,但仍要求学生进一步重视它,努力把它用准、用熟.





第六十二课时
一、课题 §5.1一元一次方程(5)
二、教学目标
1.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤;
2.培养学生观察、分析、归纳的能力,并提高他们的运算能力.
三、教学重点和难点
解一元一次方程的步骤
四、教学手段
引导——活动——讨论
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有的认知结构提出问题
1.什么叫一元一次方程?其最简形式是什么?
2.什么叫移项?移项时需注意什么?
3.(投影)下列方程的解法对不对?若不对,错在哪里?怎样改正?
(1)解方程2x+1=4x+1.
解:2x+4x=0,
6x=0,
所以     x=0.
解:x+1=3x-1-1,
2x=3,
解:4x+2-x+1=12.
3x=9,
所以        x=3.
(分别让三名学生分别解答本题,其他学生评判,并补充,以求得正确地解答)
然后,教师应指出:一元一次方程的解法基本学习完了,现在对任何形式的一元一次方程都会解了.解一元一次方程的指导思想就是把原方程化为ax=b(a≠0)的形式.为了更迅速地解一元一次方程,下面我们一起来总结一下解一元一次方程的一般步骤.
(二)、师生共同讨论,归纳出解一元一次方程的一般步骤
(学生口述,教师板书)
解:去分母,得
6(x+3)=22.5x-10(x-7),
去括号,得
6x+18=22.5x-10x+70,
移项,得
6x-22.5x+10x=70-18,
合并同类项,得
-6.5x=52,

北师大版数学七年级上册教案全集由www.jiaoshi66.com收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com 系数化1,得
x=-8.
结合上面学生解答的例题,教师应首先让几名学生总结解一元一次方程的步骤;然后教师指出总结的不足之处,并结合投影,给以正确的叙述.
(三)、课堂练习
解下列方程:
(这组练习题的作用在于巩固并加深学生对一元一次方程解法步骤的理解及运用.教学时,可选好、中、差的学生分别在黑板上板演,发动学生改错、评议,以起到一题多用)
(四)、师生共同小结
首先,应让学生思考以下问题,并回答:
1.形式上比较复杂的一元一次方程是怎样求解的?
2.它的解法的主要思路是什么?
3.它的解法的主要步骤是什么?
结合学生的回答,教师应指出:
解一元一次方程的指导思想是把原方程化为ax=b(a≠0)的形式.其解法可分为两大步:一步是化为ax=b的形式,再一步是解方程ax=b.
在计算或变形时,要养成良好的学习习惯,注意书写格式的规范性,避免在去分母,去括号、移项时易犯的错误.
七、练习设计
解下列方程:
1.17(2-3y)-5(12-y)=8(1-7y);
2.5(z-4)-7(7-z)-9=12-3(9-z);
3.3(x-7)-2[9-4(2-x)]=22;
4.3{2x-1-[3(2x-1)+3]}=5;
八、板书设计
         §5.1一元一次方程(5)
(一)知识回顾   (三)例题解析    (五)课堂小结
            例1、例2
(二)观察发现    (四)课堂练习    练习设计    
九、教学后记
在小结里提出解一元一次方程分为两大步,目的是进一步强调解一元一次方程的指导思想是化归思想.从而使学生明确最简方程是解一元一次方程的化归目标,而解一元一次方程的过程是,首先寻求所给方程与目标的差异,然后设法消除差异,直至达到化归目标,即化为最简方程,求出方程的解.这里化归的具体方法是去分母、去括号、移项、合并同类项等.这样处理,可使学生在解题时思路明确,有章可循.


第六十三课时
一、课题 §5.1一元一次方程(6)
二、教学目标
1.使学生灵活运用解方程的一般步骤解题;
2.培养学生观察、分析、转化的能力,提高他们综合解题的能力.
三、教学重点和难点
重点:灵活地运用解题步骤;
难点:如何在“灵活”二字上下功夫.
四、教学手段
引导——活动——讨论
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有的认知结构提出问题
请学生回答:一元一次方程的解题的一般步骤是什么?
针对学生的回答,教师应指出:由于方程的形式不同,解方程时,不一定非按这样的顺序不可,其中有些步骤也可能用不到,可以灵活运用.
(二)、讲授新课
例1 解方程4(x-3)=32.
针对本题提问:1.本题应如何解?2.怎样解较好?(分别请两名学生板演,然后比较他们的解法哪个较好)
解法1:4x-12=32,
4x=44,
x=11.
解法2:4(x-3)=32
x-3=8,
x=11.
通过比较,得出解法2比解法1好.
分析本题时可向学生提问:先经过怎样的变形可使运算简便?(结合学生的回答,教师应指出:将方程的分母运用分数的基本性质化为整数后,再去分母.可使运算简便)
解:原方程化为
去分母,得
30x-7(17-20x)=21,
去括号,得30x-119+140x=21,
合并同类项,得
170x=140,
系数化1,得
(以上过程,学生口述,教师板书)
(首先让学生思考如何解答可使运算简便?结合学生的回答,教师适当点拨)
分析:先去括号,再去分母方法较好.
解:去括号,得
去分母,得
12x-6x+3x-3=8x-8,
移项,得
12x-6+3x-8x=-8+3,
合并同类项,得x=-5.
(请学生观察并思考本题,怎样去括号较为合理呢?结合学生的回答,教师作适当补充)分析:此题若先去括号显然不妥,如先去分母,同时也就去掉大括号,原方程化为:
两边乘以3,可去掉中括号.两边再乘以4,可去掉小括号.
解:方程两边乘以2,得
方程两边乘以3,得
方程两边都乘以4,得
系数化1,得 x=5.
(例3、例4的解答过程均采用学生口述,教师板演来完成,同时在解答过程,若学生某一步骤感到困难,教师应做适当引导)
针对诸如例2、例3、例4这样的形式上比较复杂的方程,教师应提醒学生:
在求解时,应注意分析方程的结构特点,灵活地安排解题步骤;同时,由于这类题目步骤繁多,容易出错,故学生必须检验.
(三)、巩固练习
解下列方程:
(四)、师生共同小结
首先,让学生回答:学习了本节课的内容后,你的收获都有哪些?
其次,教师结合学生的回答还应进一步指出:
解方程的指导思想即把原方程化为ax=b(a≠0)的形式,这里,化为ax=b的三个步骤(去分母、去括号、合并同类项)可以灵活运用,要注意题目的特点,择优从之.
七、练习设计
解下列方程:P123 1、2、3题
八、板书设计
         §5.1一元一次方程(6)
(一)知识回顾   (三)例题解析    (五)课堂小结
            例1、例2
(二)观察发现    (四)课堂练习    练习设计    
九、教学后记
熟练而准确地掌握一元一次方程的解法,是本章也是初中数学的重点和难点.因此,在教学过程设计时,注重了讲、练结合.同时在除了安排一定量的例题以外,还安排了相当数量的练习,从而使学生更好地达到上述要求.
在设计整个一元一次方程的解法的教学过程时,始终遵照“坚持启发式,反对注入式”的教学原则.即在课上,凡是学生自己努力能解的方程都应由学生自己解决完成


第六十四课时
一、课题 §5.1一元一次方程(7)
二、教学目标
1.使学生熟悉一些公式,为今后学习物理、化学打好基础;
2.进一步培养学生观察、分析、转化的能力,加强学生分析问题和解决问题的能力.
三、教学重点和难点
重点:认清公式中的已知量和未知量;由题意找等量关系.
难点:公式的恒等变形.
四、教学手段
引导——活动——讨论
五、教学方法
启发式教学

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]  下一页

收藏此页】【 】【打印】【回到顶部
 《北师大版数学七年级上册教案全集》相关文章
相关分类
七年级数学教案推荐