标签:小学五年级数学教案,五年级上册数学教案,http://www.jiaoshi66.com
人教版数学五年级第九册教案,
三、课堂练习
1.练习十九第7题:根据表中所给的数值算出每种渠道横截面的面积。
渠口宽(米) 3.1 1.8 2.0 2.0 渠底宽(米) 1.5 1.2 1.0 0.8 渠深(米) 0.8 0.8 0.5 0.6 横截面面积(平方米) 生独立解答出结果并填在课本上,集体订正。
2.练习十八第10题:一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?
四、作业
练习十九第9题。
第三课时
练习内容:混合练习(练习十八第11~15题)
练习要求:使学生进一步掌握平行四边形、三角形和梯形的面积公式,能正确、熟练地计算它们的面积。
练习重点:正确运用公式计算所学的图形的面积。
教具准备:投影
教学过程:
一、基本练习
1.回答下列各图面积地计算公式和字母公式。
长方形 长×宽 ab
正方形 边长×边长 a2
平行四边形 底×高 ah
三角形 底×高÷2 ah÷2
梯形 (上底+下底)×高÷2 (a+b)h÷2
2.平行四边形、三角形、梯形的面积公式是怎样推导出来的?
二、指导练习
练习十八第12题:计算下面每个图形的面积。
3米 8米 12米
5.6米 9.5米 12米
5厘米
5.4
分 5.8厘米 5.2厘米
米
3分米 5厘米 7厘米
⑴省独立审题,计算每个图形的面积。
⑵师巡视,看同学们在计算书三角形和梯形的的面积时是否注意了“除以2”
⑶指6名学生板演,集体订正。
2.练习十八第15题。生独立审题并计算出三角形的面积,注意单位的换算。
三、课堂练习
练习十八第14题
四、攻破难题
1. 16题:一个鱼塘的形状是梯形,它的上底长21米,下底长45米,面积是759平方米。它的高是多少?
分析与解:
⑴已知梯形的面积=(上底+下底)×高÷2
⑵上底+下底=21+45=66米
⑶高=759÷66×2=23米 20厘米
2. 17题:已知右面梯形的上底
人教版数学五年级第九册教案由教案吧收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com
是20厘米,下底是34厘米,其中涂色
部分的面积是340平方厘米。这个梯形
的面积是多少? 34厘米
分析与解:要求梯形的面积,但不知道高。根据阴影部分是三角形,又知道三角形的面积和底,可以求出它的高,也就是梯形的高,再算出梯形的面积。
高:340×2÷34=20厘米,
面积:(34+20)×20÷2=540平方厘米
3. 18题:在下面的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?
15厘米
12厘米
25厘米
分析与解:以下底为底,一上底上的任意一点为三角形的顶点剪下的三角形都是最大的。因为所有的三角形的底和高都没有变,剩下的图形可能是一个三角形,也可能是两个三角形。
(15+25)×12÷2=240平方厘米
25×12÷2=150平方厘米
240-150=90平方厘米
4.思考题 4厘米
右图中,梯形的面积是72 12
平方厘米。请你算出阴影 厘
部分的面积。 米
解法一:先算出没有阴影部分
的面积:4×12÷2=24平方厘米,
再用梯形的面积减去这个三角形
的面积:72-24=48平方厘米。
解法二:阴影部分是一个三角形,这个三角形的高是12厘米,底与梯形的下底是同一条线段,先算出梯形的下底:
72×2÷12-4=8厘米
再算阴影部分的面积:8×12÷2=48平方厘米。
五、作业
练习十八11、13题
4.选学内容
第一课时
教学内容:组合图形面积的计算。(例题和做一做,练习十九第1~4题。)
教学要求:
1.使学生理解组合图形的含义,初步了解组合图形面积的计算方法;
2.会计算一些较简单的组合图形的面积,提高学生运用几何初步知识解决实际问题的能力。
教学重点:使学生初步掌握组合图形面积的计算方法,会计算简单的组合图形的面积。
教学难点:能正确地把组合图形分解成几个已学过的图形。
教具准备:投影片若干
教学过程:
一、激发
1.口答下列各图形面积的计算公式,并计算出它们的面积。
2米 3分米
3米 4米 5分米
2厘米
1.2米 10厘米
1.6米 2.5厘米
2.揭题:在实际生活中,我们见到的物体表面,有很多图形是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的,我们把这些图形叫做组合图形。今天我们就学习组合图形面积的计算。板书课题:组合图形面积的计算。
二、尝试
1.投影出示例题:右图表示的是 2米
一间房子侧面墙的形状。它的面积是
5米
多少平方米?
5米
2.引导学生看图思考并回答。
(1)这个组合图形能否分解成几个
我们学过的简单图形?
(2)怎样求这个组合图形的面积呢?
3.生计算出这个组合图形的面积。
(1)生在书上例题下面填空。
(2)集体订正时让学生说说怎样计算组合图形的面积?
(3)师强调指出:计算组合图形的面积,一般是先把它分成几个我们学过的简单图形,分别计算出各个简单图形的面积,然后再把它们加起来,就是整个组合图形的面积。
4.尝试后练习:做一做
新丰小学有一块菜地,形状如
右图。算出这块菜地的面积多少平
方米。
生独立审题,观察菜地的形状,思考将它分成几个什么样的简单图形,再让学生讲一讲,最后计算出这块菜地的面积。集体订正。
三、应用
1.练习十九第3题:量一量少先队的中队旗,算出它的面积。(你能想出不同的解法吗?)
(1)生分组讨论:怎样分成几个我们学过的简单图形?
(2)对分解合理简单的做法在投影仪上显示出来。
(3)生选取一种方法,量出所需长度,再计算出它的面积。
2.练习十九第4题:下面是一种机器零件的横截面图,求出涂色部分的面积是多少平方毫米。
20毫米
10毫米
30毫米 27毫米
54毫米
生独立计算出它的面积,集体订正时讲一讲自己是怎样想的。
四、体验
本节课,你有什么收获?
五、作业
练习十九第1、2题。
整理和复习
第一课时
复习内容:多边形面积的计算。(整理和复习的第1~3题,练习二十1~4题。)
复习要求:使学生在理解的基础上进一步掌握平行四边形、三角形和梯形面积的计算公式,能够计算它们的面积。
复习重点:熟悉各图形面积公式的推导过程,加深对公式的理解。教具准备:平行四边形、两个完全一样的三角形和梯形、剪刀。
教学过程:
一、基本练习
口算 (三)。
0.1×0.02 4.2÷0.1 99×0.35
12÷0.3 1.25×0.8×0.5 0.9÷0.01
1.5×0.4 16÷1.6 3.5+3.5×3
64.32÷16 0.05×0.8 1.23÷3
0.65×1.02 8.8÷2.2 2.4×2.5
4.2÷3.5 7.2×0.3+2.8×0.3
2.87÷0.7 (1.5+0.25)×4
6.4×0.2+3.6×0.2
二、复习指导
1.复习平行四边形、三角形、梯形面积公式的推导过程。
⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。
⑵根据学生的回答,投影出示每个公式的推导过程。如图:
2.生独立做 “整理和复习”的第1题。集体订正时让学生讲一讲为什么三角形和梯形的面积公式中要“÷2”?
三、课堂练习
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] 下一页