您现在的位置: 六六教师之家教育文章优秀教案数学教案五年级数学教案人教版数学五年级第九册教案

人教版数学五年级第九册教案

六六教师之家 | 五年级数学教案 | 人气:686

标签:小学五年级数学教案,五年级上册数学教案,http://www.jiaoshi66.com 人教版数学五年级第九册教案,
教学重点:根据文字叙述列出等式。
教学难点:把文字叙述“翻译”成等式,正确地设未知数列方程解文字叙述题。
教学用具:小黑板或投影片若干张。
教学过程:
  一、激发
  1.用含有字母的式子表示下面的数量关系
(1)3与x的2倍的和。
(2)30减去x除以4的商。
2.把下面的方程用文字叙述出来。
(1)3x+4=16  (2)5x-21=9
  3.揭示课题:上节课我们学习了解含有两、三步运算的简易方程,这节课我们进一步学习设未知数列方程解含有两步计算的文字叙述题。(板书课题:列方程解含有两步运算的文字题。)
  二、尝试
  1.投影出示例4:一个数的6倍减去35,差是13,求这个数。2.生读题,理解题意。
  3.问:要列出方程解这类题目,首先应该做什么?再做什么?
(先要设所求的未知数为x,然后根据题意列出方程。)
  4.师板书:解:设这个数是x。
  5.谁能根据题意列出方程?指名列出方程,板书:6x-35=13。
  6.指名板演,其他同学在练习本上解方程。集体订正。
7.做一做:P.110
三、应用
1.练习二十五第5题。
  先让学生自己试着看图列方程,教师巡视,收集不同的方程
后每一题指名让学生说一说自己是怎样想的,所列的方程是什么,
  2.练习二十五第6题。
  让学生独立做在练习本上。然后,教师提问:这题里面前两小题与后两小题解的过程有什么不同?(前两小题不用再设未知数,而后两小题需要先设未知数为x。)
  3.练习二十五第8题。
四、体验 
今天我们学习了列方程解文字叙述题,进一步学习了解含有两步运算的简易方程。列方程解文字叙述题时,先要写“解”字;再在“解”的后面写明设哪个数为x(如题里已经说明未知数是x的,就不必再写了);然后按照题意把文字叙述“翻译”成含有未知数的等式,即列方程(通常列出的方程的顺序与题目叙述的顺序是一致的);最后解方程,求出未知数的值。
五、作业
1.练习二十五第7、9题。
2.学有余力的学生可做练习二十七第10、11题和思考题。
第11题第(2)小题,使学生明确:先列出方程即3x-9=12,解出x=7时,3x-9=12。为了使3x-9的差大于12,就要加大被减数,3x是被减数要加大,所以x必须大于7。
第12题,根据题意,这里实际上是解两个方程:
(36—4a)÷8=0,(36-4a)÷8=1。
思考题渗透了函数极值的思想。可以让学生通过试探找出答案,也可以先选较小的数来试。例如a+b=10。学生找出答案以后,可以让他们想一想,从中发现了什么规律。一般地,两个数的和是一个定数,那么这两个数相等时,它们的积最大;这两个数相差越大,它们的积越小。这一规律,也可以联系长方形周长一定时,怎样使面积最大和最小来说明。本题的答案:ab最大是2500,(即50×50);最小是99,即(99×1)。





第四课时
教学内容:解简易方程(三)(例5、6和做一做,练习二十六第1—4题。)
教学要求:
1.使学生初步学会ax±bx=c这一类简易方程的解法,知道计算这类方程的道理。
2.能正确解ax+bx=c的方程,提高学生的计算能力。
3. 渗透事物之间相互联系又相互转化的观点。培养学生认真计算,自觉检验的好习惯。
教学重点:ax+bx=c这一类方程的解法。

人教版数学五年级第九册教案由教案吧收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com 教学难点:化简形如ax+bx的含有字母的式子。
教具准备:投影
教学过程:
一、激发
1.口头解下列方程(卡片出示)
 3x=27  3x-43=27  3x+4×3=27
2.用字母表示乘法分配律:(a+b)c=ac+bc
二、尝试
1.出示例5.一个工地用汽车运土,每辆车运5吨,一天上午运了4车,下午运了3车。这一天共运土多少吨?
  (1)读题,理解题意。
  (2)投影出示例5图,引导学生观察。
(3)提问:通过观察这幅图,你都知道了什么?(引导学生回答:知道上午运土的吨数,下午运土的吨数,可以求一天运土的吨数。)
  (4)要求学生分别用式子表示出来。
板书:5×4+5×3=35    5×(4+3)=35
(5)师:如果每辆车运x吨,该怎样解答?生列式:
     4x+3x     (4+3)x
说明:这个式子中含有两个未知数。这就是今天要学习的解简易方程。(板书课题)  
(6)这个式子怎样计算呢?学生分组讨论怎样计算,师巡视。
  (7)分组汇报讨论结果:可能出现两种情况:一种认为4x表示4个x,3x表示3个x,4x+3x一共是(4+3)个x,也就是7x。另一种认为4x+3x可以根据乘法分配律把4和3相加,就是(4+3)个x=7x。
  (8)教师对两种思考给以充分肯定后说明:两种思考方法既有联系又有区别,最后的结果都是正确的。板书如下:
  4x+3x=(4+3)x=7x
  答:这一天共运土7x吨。
  教师提示计算时虚线部分的过程可以不写。
  (9)思考:上午比下午多运的吨数是多少?口头列式后,把结果写在书上。
  (10)订正并提示:1个x,可以写成x,1可以省略不写。  
  (11)引导学生小结:一个式子中如果含有两个x的加减法,可以根据乘法分配律和式子所表示的意义,将x前面的因数相加或相减,再乘以x,计算出结果。
(12)做一做:
学生自己计算结果,集体订正。
订正时注意特殊类型如:3.5t-t  76+6  3x+6x-8x
2.板书例6:解方程7x+9x=80
 (1)观察这个方程有什么特点?(引导学生回答:这个方程等号左边含有两个x)
 (2)启发学生知道:解这个方程要先计算等号左边的。
(3)生独立解答,师个别指导。
(4)集体订正,让学生讲计算过程,并板书解题过程。
解方程7x+9x=80
    解:  16x=80
x=5
检验:把x=5代入原方程。
  左边=7×5+9×5=80,右边=80。
  左边=右边
  所以x=5是原方程的解。
(5)做一做:独立完成,集体订正,计算小数时要注意小数点。
 三、应用
 1.填空:
  (1)7x+5x表示(  ) 加(  ),一共是(  +  )个x,得(  )。
  (2)5x+4x表示(  ) 减(  ),是( - )个x,得(  )。
(3)x-0.6=(  ) 
2.直接写得数(练习二十六1题)
   9x+5x=    b-0.4b=
   6.3x-29=  5x+4x-3x=
   a+4a=     4.80+1.2a=
3.判断正误,对的画“√”,错的画“X”
(1)5x-4.7x==1.7x (  )
(2)8x+0.06x=8.06x (  )
(3)3.5x-x=3.4x  (  )
4.练习二十六3题,在书上完成,集体订正。
5.练习二十六4题,学生独立完成,集体订正
四、体验
  我们今天学习的解方程与以前的有什么不同?(相加或相减的两个数都含有未知数x。)解这样的方程应怎样做呢?(运用乘法的分配律,把未知数前面的数先加、减,得出一个含有未知数的
数,再求出未知数x的值。)
  五、作业
练习二十六第2题。



第五课时
练习内容:巩固练习(练习二十六第5—12题和思考题。)
练习要求: 进一步理解和掌握ax±b=c和ax±bx=c这两类简易方程的解法,培养学生的分析推理能力和思维的灵活性,提高解方程的能力。
练习重点: 解含有两、三步运算的简易方程的方法。
练习过程:
  一、基本练习
  1.解下列方程。
   1.4x+2.5=1.1  
   2.7x+6x=88
   3.3x+6x=22.5
  ⑴生自己解答,每一题指名让学生说一说解题时是怎样想的。
  第1题,先要把什么看作是一个数?(先要把4x着作是一个数)。第2题,先要把哪一部分看作是一个数?(先要把7x+6x看作是一个数。)第3题,先要做什么?再把哪一部分看作是一个数?[先要运用乘法的分配律,把3x+6x改成(3+6)x,再把(3+6)看作是一个数。]
  ⑵通过以上的分析比较,你能说一说我们学习过的解方程的方法吗? 
  ⑶先让学生自由地发言,然后教师总结:解方程时,虽然各个方程有不同的特点,但是都要先把方程中等号左边的一部分运算看作一个数。
  二、指导练习
  1.练习二十六第6题。
  让学生自己列方程并解答,做完以后,集体订正。第(2)小题,要指名让学生说一说列方程时是怎样想的。
  2.练习二十六第7题。
  ⑴先以第(1)小题为例,让学生共同讨论一下解这道题的方法。
⑵使学生明确:解题时,要把x的值代人两个式子中,分别求出数值再同圆圈右边的数比较大小,填上适当的符号。
⑶其余的题目可让学生独立做。
3.练习二十六第9题。   
 第9题是带着复习的应用题,但是问题稍有变化。这种问法具有一定的实际意义,解题方法也比较灵活。因此,有助于培养学生灵活运用所学数学知识解决简单实际问题的能力。有些学生可能会提出“题目到底要我们算什么”的疑问。教师可以引导学生独立去想:算出了什么就知道能不能完成任务?鼓励学生想出不同的方法,然后共同讨论,集体订正。

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]  下一页

收藏此页】【 】【打印】【回到顶部
 《人教版数学五年级第九册教案》相关文章
相关分类
五年级数学教案推荐