标签:小学五年级数学教案,五年级上册数学教案,http://www.jiaoshi66.com
人教版数学五年级第九册教案,
①指名学生回答:在学习乘法运算时,学习过哪些运算定律?(交换律、结合律、分配律。)
②请学生举例说明整数的乘法运算定律是否可以推到小数乘法?
(4)复习整、小数四则混合运算。
①四则混合运算的顺序。
指名让学生说一说什么叫第一级运算?什么叫第二级运算?
然后让学生说一说四则混合运算的顺序。使学生进一步掌握:在计算时首先要看题里有没有括号,如果有括号,要先算小括号里面的,再算中括号里面的;如果有两级运算,要先做第二级运算,再做第一级运算;如果只有同一级运算,要从左往右算。
②四则混合运算的一些简便算法。
出示:4.5×1.02。指名学生板演,其他同学在练习本上做。
然后让学生说一说计算过程和方法,教师对运用了简便计算方法的同学给予表扬。并告诉学生:简便算法是在前面学习整数四则运算时应用的,现在学习整、小数四则混合运算也可以应用运算定律使一些计算简便。做题时要善于观察,能运用简便方法计算的,都要用简便方法进行计算。
③列综合算式解答文字题。
师出示:6.5加上3.3,所得的和乘以2.5,再去除73.5,商是多少? 生列式计算,师巡视。
学生做完后,教师出示一道学生错列的算式:73.5÷(6.5+3.3)×2.5,让学生分析错在哪里。提醒学生注意:在列式时要仔细审题,正确使用小括号和中括号。根据题意,73.5是被除数,而除数是(6.5+3.3)×2.5的得数,要把它作为除数,就要用中括号括起来,否则列出的算式不符合题意。
三、课堂练习
练习三十二第1~4题。
第二课时
复习内容:多边形面积的计算(总复习第5题,练习三十二第5~8题。)
复习要求: 使学生进一步理解多边形面积之间的内在联系,掌握多边形面积的计算公式,能够比较熟练地计算多边形的面积。
复习重点: 多边形面积的计算公式。
复习过程:
一、基本练习
1.填空。
(1)等腰直角三角形的底边长12厘米,这条底边上的高是( )厘米,面积是( )平方厘米。
人教版数学五年级第九册教案由教案吧收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com
(2)两个完全相同的梯形可以拼成一个( ),一个梯形的面积是( )面积的( )。
(3)梯形的面积=上底+下底)X高÷2,当上底等于零时,梯形变成( ),这时面积=( );当上底与下底相等时,梯形变成( )形,这时面积=( )。
2.判断。(对的打“√”,错的打“X”。)、
(1)平行四边形的面积等于三角形面积的2倍。 ( )
(2)一个平行四边形的面积是82平方厘米,与它等底等高酌
三角形的面积是41平方厘米。 ( )
(3)等腰直角三角形的一条直角边是7厘米,这个三角形的
面积是49平方厘米。 ( )
(4)一个三角形底长3分米,高2分米。将这样的两个三角
形拼成一个平行四边形,这个平行四边形的面积是3平方分米。
( )
(5)一个三角形和一个平行四边形面积相等,底也相等,则三
角形的高是平行四边形的高的2倍。 ( )
(6)梯形的上底要比下底短。 ( )
二、复习指导
1.多边形面积的计算公式及推导。
(1)平行四边形的面积计算公式是怎样的?它是怎样推导出来的?(把一个平行四边形割补成一个长、宽分别与这个平行四边形的底、高相等的长方形,再根据长方形的面积计算公式推导出平行四边形的面积计算公式。)
板书:平行四边形的面积=底×高
S=ah
要求平行四边形的面积,必须知道什么条件?(必须知道平行四边形的底和底边上的高。)
(2)三角形和梯形的面积计算公式是怎样的?它们与平行四边形的面积有什么关系?
使学生理解三角形和梯形的面积计算公式都是在平行四边形的面积计算公式的基础上推导出来的,要加深对这两种图形的面积与平行四边形面积的内在联系的认识。
2.多边形面积的计算。
师出示P.136页总复习的第5题,请学生独立完成。做完后,指名学生说出计算结果,集体订正。
三、课堂练习
练习三十二第5—8题。
第三课时
复习内容:简易方程( “总复习”第6、7题,练习三十二第9—11题。)
复习要求:使学生更熟练地掌握用字母表示数,表示运算定律、计算公式和数量关系;进一步理解方程的意义,会解简易方程。
复习重点:解简易方程。
复习过程:
一、基本练习
1.填空。
(1)王师傅a天做m个零件,平均每天做( )个,做一个零件要( )天。
(2)17比a的3倍少多少,用含有字母的式子表示是( )。
(3)商店运来18筐苹果和x筐梨,每筐苹果重a千克,每筐30千克。商店运来的水果和梨共重( )千克。
(4)5a-3a+2a的结果是( )。
2.判断。
(1) 3a+4b=7ab ( )
(2) 2×3×x=23x ( )
(3) 22=2×2 ,33=3×3 ( )
(4) 5x=0不是方程。 ( )
(5)长方形的周长是C米,长是a米,宽是(C-2a)米。 ( )
(6)a×l0=lOa ( )
(7)种松树a棵、柏树b棵,种的松树和柏树是松树的(a+b)÷a倍。 ( )
(8)从15里减去a与b的和,求差,用式子表示是15-a+b。 ( )
(9)方程5-3.2=3x与方程5=3x-3.2的解是相同的。( )
(10)35(x+5):35x+35×5 ( )
二、复习指导
1.用字母表示数。
(1)师出示P.136页总复习的第6题,请学生按照题目要求用字母表示。
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
长方形的面积公式:S=ab
求工作总量C的公式:C=at
2.解简易方程。
(1)师出示P.137页第7题,让学生独立完成,
(2)指名学生说一说:解简易方程的依据是什么?解简易方程写时应注意什么?
使学生明确:解简易方程都是依据四则运算各部分之间的阿关系。关键是弄清未知数在等式中相当于一个什么数,然后再根据加法、减法、乘法、除法各部分之间的关系来求解。求出解以后,还要对求出的解进行检验,看是否符合题意。解简易方程在书写时应注意:首先在方程的左下方写“解”字,未知数x写在等号左边,上下等号要对齐,不能连等。
3.列方程解文字题。
(1)师出示练习题,生独立完成。
① 8.5减去4个0.875的差,除以一个数,商是20,求这个数。
② 比2.5的4倍少x的数是3,求x.
(2)生做完后,指名学生说一说是怎样理解的。结合题目,教师说明:列方程解文字题,首先应设要求的数为x,(题目中出现了未知数x的可以不写,)再把文字叙述的形式“翻译”成含有未知数x的等式(即方程),题中怎样叙述等式就怎样写,顺序一般不要改动。列出方程后,按简易方程的解法求出解来。
三、课堂练习:练习三十二第9~11题。
第四课时
复习内容:应用题(总复习第8~10题,练习三十二第12题。)
复习要求:使学生掌握解应用题的一般步骤,正确地分析应用题中数量间的关系,会列综合算式解答三步计算的应用题。
复习重点:分析应用题中的数量关系。
复习过程:
一、基本练习
口答:解答应用题的步骤是什么?
先让学生多说一说,然后教师板书:
1.弄清题意,并找出已知条件和要求的问题;
2.分析题中数量间的关系,确定先算什么,再算什么后算什么;
3.确定每一步怎样算,列出算式,并且算出得数;
4.进行检查或验算,写出答案。
二、复习指导
1.分析数量关系,用不同的思路解答应用题。
师出示总复习第9题。
(1)指名学生读题,并说出已知条件和要求的问题。
(2)请学生用两种不同的方法解题。
(3)学生做完后,指名让学生说一说是怎样想的,怎样做的;
教师根据学生的发言板书:
解法一:72+72÷3×2
解法二:72÷3×(3+2)
2.复习行程问题。
教师出示总复习的第10题。
指名学生读题,并说出第(1)题的已知条件和问题是什么,然后让学生做第(1)、(2)题。
学生做完后,教师启发学生回答:解答第(2)题,需要哪些条件?第(2)题与第(1)题有什么关系?你们是怎样解答的?
使学生明确第(2)题是求每辆车各行驶了多少千米,知道了每辆车的速度,还要知道行驶的时间,所以要把第(1)题的问题作为第(2)题的条件。
人教版数学五年级第九册教案由教案吧收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com
大部分学生可能是用每辆车的速度乘以时间来求出每辆车行驶的路程。如果有些学生先“求出一辆车行驶的路程,再用两地的距离减去这辆车行驶的路程,求出另一辆车行驶的路程”,这种算法也是可以的。要鼓励学生灵活地应用各种方法解题。
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] 下一页