标签:小学三年级数学教案,三年级上册数学教案,http://www.jiaoshi66.com
人教版数学三年级第七册教案,
2、课本第89页练习二十第1~3题。
课后小结:
第九课时:步测和目测
教学内容:步测和目测。(课本第87~88页)
教学要求:认识步测和目测的作用,掌握步测和目测的方法,能够用步测和目测测出两地之间的距离。
教学过程:
复习。
学生试说一说测量的意义?
测量土地一般用哪些工具?
怎样测定一条直线?
新授。
导入新课。
上节课我们学习了测量土地的方法以及用工具测量距离。当没有测量工具或对测量结果不要求十分精确时,也可以用步测和目测。(揭示课题:步测和目测)
学习步测的方法。
(1)步测时,必须知道自己一步的长度是多少。首先要测定一步的长度。
让一名学生在教室迈几步,然后讲清一步的长度指左(右)脚尖至右(左)脚尖的距离。把学生的一步距离用粉笔在地面上画出,即可量出一步的长度。
求平均一步的长度。
由于一个人走一段路,每一步的步长不均匀,这就需要先测量出一步的平均长度。
先用卷尺量出一段距离,再用均匀步子沿直线走上三、四次,记好每次的步数,然后用总距离除以步数和就等于一步平均长度。
讲解例1。(课本第87页)
例1:沈强走50米的距离,第一步走79步,第二次走81步,第三次走了80步。平均走一步的长度是多少?
先学生试做,后教师讲解:
解法一:
一步平均长度=距离÷平均步数
(1)求一次平均步数。(保留两位小数,就是精确到厘米。)
(79+82+81)÷3=80(步)
(2)求平均一步的长度。
50÷80≈0.63(米)
答:平均走一步的长度大约是0.63米。
解法二:
一步平均长度=总距离÷总步数
50×3÷(79+80+81)
=150÷240
(0.63(米) 答:(略)
小结:求一步一平均长度,即用所行的距离除以总步数。
求两地间的距离。
教师指出:知道了一步的平均长度就可以用步测出两地之间的距离。方法是:从一个地方走到另一个地方,数一数所走的步数,用一步平均长度乘以步数得两地间距离。
例2:张健走一步的平均长度是0.64米,他从操场的这一头走到那一头一共走了125步。这个操场大约多少米长?
距离=一步平均长度×步数
64×125=80(米)
答:这个操场大约有80米。
问:为什么这里用大约呢?(步测的数据不精确)
练习。
课本“做一做”
介绍目测的方法。
目测是只用眼睛来估量一段距离。练习目测时:
(1)先用测量工具量出一段距离,在每隔10米的地方插上标杆,看看10米、20米、30米……的距离各是多远,同时注意不同距离上标杆附近的人和其他物体的大小。
(2)然后去掉标杆,根据确定目标反复练习,目测自己和指定目标之间距离是多少,并与实际测量结果进行比较,逐步提高目测的准确度。
7.教师总结。
在没有测量工具或对测量结果要求不十分精确时,可用步测和目测。学会步测和目测对目学生活很有帮助。
巩固练习。
一块地长60米,小强从地的一头走到加一头,第一次走100步,第二次走98步,第三次走99步,一步平均长度多少米?
小华平均一步长度是0.65米,他家到学校距离是1300米。从学校到家需要走多少步?(得数保留整数)。
人教版数学三年级第七册教案由教案吧收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com
作业。
课本第89页4~5题。
课后小结:
第十课时:组合图形面积的计算
教学内容:教科书第90页的例题,完成例题下面的“做一做”和练习二十一的题目。
教学目的:使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积。
教具准备:将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上。
教学过程:
一、复习
问:第一个图形是什么形?它的面积怎样计算?(学生回答,教师在长方形下面板书:S=ab,其他图形,学生分别回答后,教师在每个图的下面写出相应的计算面积的公式。)
二、新授。
1、教学例题。
教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有进需要计算这些组合图形的面积。例如有些房子侧面墙的形状是这样的:(出示小黑板)
问:这个图形的面积我们过去学过吗?(让学生仔细观察一下)
我们虽然没有学过计算这个图形面积的计算公式,可是能不能把这个图形分成几个我们已经学过的图形呢?怎样分?(指名学生到黑板前画一画,教师标出相关尺寸。)
现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?(学生看教科书第90页上的例题,把书上的算式填完整。)
小结:在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。计算这些图形的面积,一般是先把它们分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求整个组合图形的面积。)
2、做例题下面“做一做”中的题目。
先让学生读题。
问:“这块菜地可以看成是由哪些图形组合而成?”
让每个学生在练习本上列式计算。做完后集体核对。
三、巩固练习。
做练习二十一中的题目。
第3题,投影片出示一面少先队的中队旗。
问:要计算这面中队旗的面积,怎样分成几个我们已经学过的图形呢?你是怎样做的?(让几个学生说一说自己的想法。
第4题,先让学生读题,再问:
“这个机器零件的横截面图的面积怎样计算?”(让几个学生说一说自己的想法)
“根据题目中标出的长度,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积。)
学生在练习本上列式计算,再集体订正。
四、作业。
练习二十一的第1题和第2题。
课后小结:
第一课时:用字母表示数
教学内容:教科书第95~96页的内容,完成第95页“做一做”和练习二十三中的题目。
教学目的:通过教学使学生在已有知识的基础上,进一步提高对用字母表示运算定律和计算公式的认识;理解用字母表示数的意义;知道一个数的平方的含义及读、写法;学会在含有字母的式子里乘号的简写和略写法。
教具准备:小黑板、投影片若干块。
教学过程:
一、复习。
教师用投影片出示复习题。
1、在下面的□里填上适当的数,在○里填上适当的运算符号。
(33+24)+12=33+(□+□)
50×□=6×□
(5+3.5)×□=□×□○□×4
□+270=□+360
(1.2×0.5)×□=1.2×(□×6)
2、用字母分别表示上面4道小题所根据的运算定律(写在每小题的后面)
二、新课。
1、教学用字母表示运算定律。
问:刚才我们所做的复习,是根据哪些运算定律来做,你能把这些运算定律用自己的话说出来吗?
板书: 加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a·b=b·a
乘法结合律:(a·b)·c=a·(b·c)
乘法分配律:(a+b)·c=a·c+b·c
问:把文字叙述和用字母表示运算定律比较,我们可以得出什么结论?
教师指名让学生说说自己的想法,启发学生明确,用字母表示运算定律比用文字叙述运算定律更简明、易懂、易记,也便于应用。
2、教学用字母表示计算公式。
教师用投影片出示正方形、平行四边形、三角形和梯形的图(如教科书第95页)。
让学生在堂上练习本上自己写出这四种图形的面积的计算公式。然后指名学生读自己写的公式,同时教师在黑板上板书:S=a·a;S=a·h;S=a·h÷2;S=(a+b)·h÷2
师:S=a·a可以写成表示两个a相乘,读作:a的平方。所以正方形的面积公式一般写成S=
练习:
1、读出下面各数,并说出各表示什么意思,等于多少?
、、、、
2、求边长是4厘米的正方形的面积。
指名学生先口头说出用字母表示的计算公式,再说计算过程和得数。
将题目改为:求出边长是4厘米的正方形的周长。
问:正方形的周长用c表示,边长用a表示,正方形的周长计算公式应怎样表示?
师:正方形的周长公式是:c=a·4。在含有字母的式子里,数字和字母中间的乘号可以记作“·”,也可以省略不写。但是要注意,在省略乘号的时候,应当把数字写在字母前面。所以,正方形周长的计算公式可以写成:c=4a。谁会用这个公式求出上面这一题中正方形的周长。(指名学生做)
3、堂上练习。
课本P96页“做一做”
提醒注意:在含有字母的式子里,加号、减号、除号都不能省略,如a+b不能写成ab,S÷12不能写成12S,数目与数目之间的乘号,不能省略不写。
做练习二十三的第2题。
4、教学例1。
师:我们知道了一个图形的面积或周长的计算公式,当我们要计算出这个图形的面积或周长时,实际上是把数代入有关的公式算出结果来。
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] 下一页